精英家教网 > 高中数学 > 题目详情
9.(1)计算:2log32-log3$\frac{32}{9}$+log38-25${\;}^{lo{g}_{5}3}$-${({2\frac{10}{27}})^{-\frac{2}{3}}}$+8π0
(2)已知x=27,y=64.化简并计算:$\frac{{5{x^{-\frac{2}{3}}}{y^{\frac{1}{2}}}}}{{({-\frac{1}{4}{x^{-1}}{y^{\frac{1}{2}}}})({-\frac{5}{6}{x^{\frac{1}{3}}}{y^{-\frac{1}{6}}}})}}$.

分析 (1)利用对数的运算性质即可得出.
(2)利用指数的运算性质即可得出.

解答 解:(1)原式=log34-log3$\frac{32}{9}$+log38-52 log53+${({\frac{64}{27}})^{-\frac{2}{3}}}$+8
=log3(4×$\frac{9}{32}$×8)-5 log59-${({{{({\frac{4}{3}})}^3}})^{-\frac{2}{3}}}$+8
=log39-9-$\frac{9}{16}$+8=$\frac{7}{16}$.
(2)原式=$\frac{5{x}^{-\frac{2}{3}}{y}^{\frac{1}{2}}}{\frac{5}{24}{x}^{-\frac{2}{3}}{y}^{\frac{1}{3}}}$=24${y}^{\frac{1}{6}}$=24×$({2}^{6})^{\frac{1}{6}}$=48.

点评 本题考查了对数与指数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设全集U=R,A={x|1≤x≤3},B={x|2a<x<a+3}
(Ⅰ)当a=1时,求(CUA)∩B;
(Ⅱ)若(CUA)∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧面PAD是正三角形,且平面PAD⊥平面ABCD,O为棱AD的中点.
(1)求证:PO⊥平面ABCD;
(2)求二面角A-PD-B的大小;
(3)求C点到平面PDB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知全集U=R,A={x|x≥3},B={x|x2-8x+7≤0},C={x|x≥a-1}
(1)求A∩B,A∪B;
(2)若A∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2+(4a-3)x+3a
(1)当a=1,x∈[-1,1]时,求函数f(x)的值域;
(2)已知a>0且a≠1,若函数g(x)=$\left\{\begin{array}{l}f(x),x<0\\{log_a}(x+1)+1,x≥0\end{array}$为R上的减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{5}}}{5}$,且右准线方程为x=5.
(1)求椭圆方程;
(2)过椭圆右焦点F作斜率为1的直线l与椭圆C交于A,B两点,P为椭圆上一动点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数a、b、c成公差不为零的等差数列,那么下列不等式不成立的是(  )
A.$|{b-a+\frac{1}{c-b}}|≥2$B.a3b+b3c+c3a≥a4+b4+c4
C.b2≥acD.|b|-|a|≤|c|-|b|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,角A、B、C所对的边分别为a、b、c且acosC+$\frac{1}{2}$c=b,则∠A=(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)计算:${(2\frac{1}{4})^{\frac{1}{2}}}-{(-\frac{1}{2})^0}-{(3\frac{3}{8})^{-\frac{2}{3}}}+{(\frac{3}{2})^{-2}}+{(0.125)^{\frac{1}{3}}}$
(2)${log_{\sqrt{3}}}9+{2^{\frac{1}{{{{log}_3}2}}}}$.

查看答案和解析>>

同步练习册答案