·ÖÎö £¨¢ñ£©Çó³ö½¹µã×ø±êF1Ϊ£¨-1£¬0£©£¬Éè$P£¨t£¬\sqrt{t}£©$£¬Çó³ö${k_{P{F_1}}}=\frac{{\sqrt{t}}}{t+1}$£¬ÉèÍÖÔ²MµÄÓÒ½¹µãΪF2£¨1£¬0£©£¬Çó³öa£¬c£¬È»ºóÇó½âÍÖÔ²MµÄÀëÐÄÂÊ£®
£¨¢ò£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ö±ÏßlµÄ·½³ÌΪx=my-1£¬ÓëÍÖÔ²ÁªÁ¢£¬ÀûÓÃΤ´ï¶¨Àí£¬Á¬½áOB£¬ÓÉ|OA|=|OC|ÖªS¡÷ABC=2S¡÷AOB£¬Çó½âÃæ»ý±í´ïʽ£¬Í¨¹ý¢ÙÈô$\frac{1}{b}¡Ý1$£¬¼´$1£¼a¡Ü\sqrt{2}$£¬¢ÚÈô$0£¼\frac{1}{b}£¼1$£¬$a£¾\sqrt{2}$£¬Çó½âº¯ÊýµÄ×îÖµ±í´ïʽ¼´¿É£®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒ⣬µãF1Ϊ£¨-1£¬0£©£¬Éè$P£¨t£¬\sqrt{t}£©$£¬Ôò${k_{P{F_1}}}=\frac{{\sqrt{t}}}{t+1}$£¬
ÓÖ${k_{P{F_1}}}=£¨\sqrt{x}£©'{|_{x=t}}=£¨\frac{1}{{2\sqrt{x}}}£©{|_{x=t}}=\frac{1}{{2\sqrt{t}}}$£¬ËùÒÔ$\frac{{\sqrt{t}}}{t+1}=\frac{1}{{2\sqrt{t}}}$£¬½âµÃt=1£¬¼´P£¨1£¬1£©£¬
ÉèÍÖÔ²MµÄÓÒ½¹µãΪF2£¨1£¬0£©£¬Ôò$2a=|P{F_1}|+|P{F_2}|=\sqrt{5}+1$£¬¼´$a=\frac{{\sqrt{5}+1}}{2}$£¬
ÓÖ°ë½¹¾àc=1£¬ËùÒÔÍÖÔ²MµÄÀëÐÄÂÊΪ$e=\frac{c}{a}=\frac{{\sqrt{5}-1}}{2}$£»¡£¨5·Ö£©
£¨¢ò£©ÒòΪÍÖÔ²MµÄ°ë½¹¾àc=1£¬ËùÒÔa2-b2=1£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
Ö±ÏßlµÄ·½³ÌΪx=my-1£¬
ÓÉ·½³Ì×é$\left\{\begin{array}{l}\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\\ x=my-1\end{array}\right.$ÏûÈ¥xµÃ£º£¨a2+b2m2£©y2-2b2my+b2£¨1-a2£©=0£¬
¡à${y_1}+{y_2}=\frac{{2{b^2}m}}{{{a^2}+{b^2}{m^2}}}{y_1}{y_2}=\frac{{{b^2}£¨1-{a^2}£©}}{{{a^2}+{b^2}{m^2}}}=-\frac{b^4}{{{a^2}+{b^2}{m^2}}}$£¬¡£¨7·Ö£©
Á¬½áOB£¬ÓÉ|OA|=|OC|ÖªS¡÷ABC=2S¡÷AOB£¬
¡à${S_{¡÷ABC}}=|O{F_1}|•|{y_1}-{y_2}|=\sqrt{{{£¨{y_1}+{y_2}£©}^2}-4{y_1}{y_2}}=\frac{{2a{b^2}\sqrt{{m^2}+1}}}{{{a^2}+{b^2}{m^2}}}$¡£¨9·Ö£©
Áî$\sqrt{{m^2}+1}=t$£¬Ôòm2=t2-1£¨t¡Ý1£©£¬¡à${S_{¡÷ABC}}=\frac{{2a{b^2}t}}{{{a^2}+{b^2}£¨{t^2}-1£©}}=\frac{{2a{b^2}t}}{{1+{b^2}{t^2}}}=\frac{{2a{b^2}}}{{{b^2}t+\frac{1}{t}}}$£¬
¢ÙÈô$\frac{1}{b}¡Ý1$£¬¼´$1£¼a¡Ü\sqrt{2}$£¬Ôò${b^2}t+\frac{1}{t}¡Ý2b=2\sqrt{{a^2}-1}$£¬
µ±ÇÒ½öµ±$t=\frac{1}{b}$£¬¼´$m=¡À\sqrt{\frac{{2-{a^2}}}{{{a^2}-1}}}$ʱ£¬$S£¨a£©={£¨{S_{¡÷ABC}}£©_{max}}=a\sqrt{{a^2}-1}$£»¡£¨10·Ö£©
¢ÚÈô$0£¼\frac{1}{b}£¼1$£¬¼´$a£¾\sqrt{2}$£¬Éè$f£¨t£©={b^2}t+\frac{1}{t}$£¬Ôòt¡Ý1ʱ£¬$f'£¨t£©={b^2}-\frac{1}{t^2}=\frac{{{b^2}{t^2}-1}}{t^2}£¾0$£¬
ËùÒÔf£¨t£©ÔÚ[1£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬ËùÒÔ${[f£¨t£©]_{min}}=f£¨1£©={b^2}+1={a^2}$£¬µ±ÇÒ½öµ±t=1£¬
¼´m=0ʱ£¬$S£¨a£©={£¨{S_{¡÷ABC}}£©_{max}}=\frac{{2£¨{a^2}-1£©}}{a}$£»¡£¨12·Ö£©
×ÛÉÏ¿ÉÖª£º$S£¨a£©=\left\{{\begin{array}{l}{a\sqrt{{a^2}-1}£¬1£¼a¡Ü\sqrt{2}}\\{\frac{{2£¨{a^2}-1£©}}{a}£¬a£¾\sqrt{2}}\end{array}}\right.$¡£¨13·Ö£©
µãÆÀ ±¾Ì⿼²éÖ±Ïß³äµÄλÖùØÏµµÄÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£¬¿¼²éº¯ÊýµÄ×îÖµµÄÇ󷨵¼ÊýµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 32 | B£® | 36 | C£® | 18 | D£® | 86 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 400 | B£® | 410 | C£® | 420 | D£® | 430 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 4 | B£® | 5 | C£® | 6 | D£® | 7 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com