18£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÒ»¸ö½¹µãΪF£¨1£¬0£©£¬ÇÒ¹ýµã£¨-1£¬$\frac{3}{2}$£©£¬ÓÒ¶¥µãΪA£¬¾­¹ýµãFµÄ¶¯Ö±ÏßlÓëÍÖÔ²½»ÓÚB£¬CÁ½µã£®
£¨1£©ÇóÍÖÔ²·½³Ì£»
£¨2£©¼Ç¡÷AOBºÍ¡÷AOCµÄÃæ»ý·Ö±ðΪS1ºÍS2£¬Çó|S1-S2|µÄ×î´óÖµ£»
£¨3£©ÔÚxÖáÉÏÊÇ·ñ´æÔÚÒ»µãT£¬Ê¹µÃµãB¹ØÓÚxÖáµÄ¶Ô³ÆµãÂäÔÚÖ±ÏßTCÉÏ£¿Èô´æÔÚ£¬ÔòÇó³öTµã×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÀûÓý¹µãΪF£¨1£¬0£©£¬ÇÒ¹ýµã£¨-1£¬$\frac{3}{2}$£©£¬Áгö·½³Ì£¬È»ºóÇó½âÍÖÔ²·½³Ì£®
£¨2£©ÉèÖ±Ïßl·½³ÌΪ£ºx=my+1£®ÓëÍÖÔ²ÁªÁ¢£¬ÉèB£¨x1£¬y1£©£¬C£¨x2£¬y2£©£¬£¨y1£¾0£¬y2£¼0£©£¬ÀûÓÃΤ´ï¶¨Àí£¬Í¨¹ýµ±m=0ʱ£¬ÏÔÈ»|S1-S2|=0£»µ±m¡Ù0ʱ£¬$|{{S_1}-{S_2}}|=|{\frac{1}{2}•2•{y_1}-\frac{1}{2}•2•£¨-{y_2}£©}|$£¬Çó½â|S1-S2|µÄ×î´óÖµ£®
£¨3£©¼ÙÉèÔÚxÖáÉÏ´æÔÚÒ»µãT£¨t£¬0£©Âú×ãÒÑÖªÌõ¼þ£¬ÀûÓÃkTB=-kTC£¬Çó³öt©q˵Ã÷´æÔÚµãT£¨4£¬0£©Âú×ãÌõ¼þ£®

½â´ð ½â£º£¨1£©ÓÉÒÑÖªµÃ$\left\{\begin{array}{l}\frac{1}{{a}^{2}}+\frac{9}{4{b}^{2}}=1\\{a}^{2}-{b}^{2}=1\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}a=2\\ b=\sqrt{3}\end{array}\right.$£¬
¡àÍÖÔ²·½³ÌΪ£º$\frac{x^2}{4}+\frac{y^2}{3}=1$¡­£¨3·Ö£©
£¨2£©ÉèÖ±Ïßl·½³ÌΪ£ºx=my+1£®
ÁªÁ¢CµÃ£¨3m2+4£©y2+6my-9=0
ÉèB£¨x1£¬y1£©£¬C£¨x2£¬y2£©£¬£¨y1£¾0£¬y2£¼0£©£¬Ôò${y_1}+{y_2}=-\frac{6m}{{3{m^2}+4}}£¬{y_1}{y_2}=-\frac{9}{{3{m^2}+4}}$
µ±m=0ʱ£¬ÏÔÈ»|S1-S2|=0£»
µ±m¡Ù0ʱ£¬$|{{S_1}-{S_2}}|=|{\frac{1}{2}•2•{y_1}-\frac{1}{2}•2•£¨-{y_2}£©}|$=$|{{y_1}+{y_2}}|=\frac{6|m|}{{3{m^2}+4}}$=$\frac{6}{{3|m|+\frac{4}{|m|}}}¡Ü\frac{6}{{2\sqrt{3|m|•\frac{4}{|m|}}}}=\frac{{\sqrt{3}}}{2}$
µ±ÇÒ½öµ±$3|m|=\frac{4}{|m|}$£¬¼´$m=¡À\frac{{2\sqrt{3}}}{3}$ʱȡµÈºÅ
×ۺϵÃ$m=¡À\frac{{2\sqrt{3}}}{3}$ʱ£¬|S1-S2|µÄ×î´óֵΪ$\frac{{\sqrt{3}}}{2}$£®¡­£¨8·Ö£©
£¨3£©¼ÙÉèÔÚxÖáÉÏ´æÔÚÒ»µãT£¨t£¬0£©Âú×ãÒÑÖªÌõ¼þ£¬ÔòkTB=-kTC
¼´$\frac{y_1}{{{x_1}-t}}=-\frac{y_2}{{{x_2}-t}}⇒{y_1}£¨{x_2}-t£©+{y_2}£¨{x_1}-t£©=0$
⇒y1£¨my2+1-t£©+y2£¨my1+1-t£©=0⇒2my1y2+£¨1-t£©£¨y1+y2£©=0$⇒2m•\frac{-9}{{3{m^2}+4}}+£¨1-t£©•\frac{-6m}{{3{m^2}+4}}=0$
ÕûÀíµÃ£º£¨4-t£©•m=0£¬
¡ßmÈÎÒ⣬¡àt=4©q¹Ê´æÔÚµãT£¨4£¬0£©Âú×ãÌõ¼þ©q¡­£¨14·Ö£©

µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄ×ÛºÏÓ¦Óã¬ÍÖÔ²·½³ÌµÄÇ󷨣¬´æÔÚÐÔÎÊÌâµÄ´¦Àí·½·¨£¬Î¤´ï¶¨ÀíÒÔ¼°»ù±¾²»µÈʽµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÈôË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ½¥½üÏßÓëÔ²x2+y2-4x+3=0ÏàÀ룬ÔòË«ÇúÏßÀëÐÄeµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨1£¬+¡Þ£©B£®£¨$\frac{2\sqrt{3}}{3}$£¬+¡Þ£©C£®£¨$\frac{\sqrt{5}+1}{2}$£¬+¡Þ£©D£®£¨$\sqrt{2}$+1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÉèPΪ˫ÇúÏß C£ºx2-y2=1µÄÒ»µã£¬F1£¬F2·Ö±ðΪ˫ÇúÏßCµÄ×ó¡¢ÓÒ½¹µã£¬Èôcos¡ÏF1PF2=$\frac{1}{3}$£¬Ôò¡÷PF1F2µÄÄÚÇÐÔ²µÄ°ë¾¶Îª£¨¡¡¡¡£©
A£®$\sqrt{2}$-1B£®$\sqrt{2}$+1C£®$\sqrt{3}$-1D£®$\sqrt{3}$+1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªf£¨x£©=cos£¨¦Øx+$\frac{¦Ð}{6}$£©£¨¦Ø£¾0£©µÄͼÏóÓëÖ±Ïßy=1µÄÁ½¸ö½»µãµÄ×î¶Ì¾àÀëÊǦУ¬ÒªµÃµ½y=f£¨x£©µÄͼÏó£¬Ö»ÐèÒª°Ñy=sin¦ØxµÄͼÏ󣨡¡¡¡£©
A£®Ïò×óÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»B£®ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»
C£®Ïò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»D£®ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Ôڱ߳¤Îª2µÄÕý·½ÐÎABCDÄÚ²¿ÈÎȡһµãM£¬ÔòÂú×ã¡ÏAMB£¼90¡ãµÄ¸ÅÂÊΪ$1-\frac{¦Ð}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÍÖÔ²$M£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄ×ó½¹µãΪF1£¨-1£¬0£©£®
£¨¢ñ£©ÉèÍÖÔ²MÓ뺯Êý$y=\sqrt{x}$µÄͼÏó½»ÓÚµãP£¬Èôº¯Êý$y=\sqrt{x}$ÔÚµãP´¦µÄÇÐÏß¹ýÍÖÔ²µÄ×ó½¹µãF1£¬ÇóÍÖÔ²µÄÀëÐÄÂÊ£»
£¨¢ò£©Éè¹ýµãF1ÇÒбÂʲ»ÎªÁãµÄÖ±Ïßl½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬Á¬½áAO£¨OÎª×ø±êÔ­µã£©²¢ÑÓ³¤£¬½»ÍÖÔ²ÓÚµãC£¬ÈôÍÖÔ²µÄ³¤°ëÖ᳤aÊÇ´óÓÚ1µÄ¸ø¶¨³£Êý£¬Çó¡÷ABCµÄÃæ»ýµÄ×î´óÖµS£¨a£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®¹ýÅ×ÎïÏßC£ºx2=4y¶Ô³ÆÖáÉÏÈÎÒ»µãP£¨0£¬m£©£¨m£¾0£©×÷Ö±ÏßlÓëÅ×ÎïÏß½»ÓÚA£¬BÁ½µã£¬µãQÊǵãP¹ØÓÚÔ­µãµÄ¶Ô³Æµã£®
£¨1£©µ±Ö±Ïßl·½³ÌΪx-2y+12=0ʱ£¬¹ýA£¬BÁ½µãµÄÔ²MÓëÅ×ÎïÏßÔÚµãA´¦Óй²Í¬µÄÇÐÏߣ¬ÇóÔ²MµÄ·½³Ì
£¨2£©Éè$\overrightarrow{AP}$=¦Ë$\overrightarrow{PB}$£¬Ö¤Ã÷£º$\overrightarrow{QP}$¡Í£¨$\overrightarrow{QA}$-¦Ë$\overrightarrow{QB}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖª¡ÑC¹ýµãP£¨1£¬1£©£¬ÇÒÓë¡ÑM£º£¨x+2£©2+£¨y+2£©2=r2£¨r£¾0£©¹ØÓÚÖ±Ïßx+y+2=0¶Ô³Æ£®
£¨¢ñ£©Çó¡ÑCµÄ·½³Ì£»
£¨¢ò£©¹ýµãP×÷Á½ÌõÏàÒìÖ±Ïß·Ö±ðÓë¡ÑCÏཻÓÚA£¬B£¬ÇÒÖ±ÏßPAºÍÖ±ÏßPBµÄÇãб½Ç»¥²¹£¬OÎª×ø±êÔ­µã£¬ÊÔÅжÏÖ±ÏßOPºÍABÊÇ·ñƽÐУ¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Ò»Î»Ä¸Ç×ÔÚº¢×ӵijɳ¤µµ°¸ÖмǼÁËÄêÁäºÍÉí¸ß¼äµÄÊý¾Ý£¨½ØÈ¡ÆäÖв¿·Ö£©£º
ÄêÁ䣨ÖÜË꣩3456789
Éí¸ß94.8104.2108.7117.8124.3130.8139.1
¸ù¾ÝÒÔÉÏÑù±¾Êý¾Ý£¬½¨Á¢ÁËÉí¸ßy£¨cm£©ÓëÄêÁäx£¨ÖÜË꣩µÄÏßÐԻع鷽³ÌΪ$\widehat{y}$=7.19x+a£¬¿ÉÔ¤²â¸Ãº¢×Ó10ÖÜËêʱµÄÉí¸ßΪ£¨¡¡¡¡£©
A£®142.8cmB£®145.9cmC£®149.8cmD£®151.7cm

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸