精英家教网 > 高中数学 > 题目详情
7.已知⊙C过点P(1,1),且与⊙M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.
(Ⅰ)求⊙C的方程;
(Ⅱ)过点P作两条相异直线分别与⊙C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.

分析 (Ⅰ)设出圆心的坐标,根据题意列方程求得圆心的坐标,求得半径,则圆的方程可得.
(Ⅱ)设出PA,PB的直线方程,把直线PA与圆的方程联立,根据点P的横坐标表示出方程的两个解,进而可表示出直线AB的斜率,判断出两直线的斜率相等.

解答 (Ⅰ)解:设圆心C(a,b),则$\left\{{\begin{array}{l}{\frac{a-2}{2}+\frac{b-2}{2}+2=0}\\{\frac{b+2}{a+2}=1}\end{array}}\right.$,解得$\left\{{\begin{array}{l}{a=0}\\{b=0}\end{array}}\right.$,
则圆C的方程为x2+y2=r2,将点P的坐标代入得r2=2,
故圆C的方程为x2+y2=2.
(Ⅱ)解:由题意知,直线PA和直线PB的斜率存在,且互为相反数,
故可设PA:y-1=k(x-1),PB:y-1=-k(x-1),且k≠0,
由$\left\{{\begin{array}{l}{y-1=k(x-1)}\\{{x^2}+{y^2}=2}\end{array}}\right.$,得(1+k2)x2-2k(k-1)x+k2-2k-1=0,
∵点P的横坐标x=1一定是该方程的解,故可得xA=$\frac{{{k^2}-2k-1}}{{1+{k^2}}}$,
同理,xB=$\frac{{{k^2}+2k-1}}{{1+{k^2}}}$,
∴${k_{AB}}=\frac{{{y_B}-{y_A}}}{{{x_B}-{x_A}}}=\frac{{-k({x_B}-1)-k({x_A}-1)}}{{{x_B}-{x_A}}}=\frac{{2k-k({x_B}+{x_A})}}{{{x_B}-{x_A}}}$=1=kOP
∴直线AB和OP一定平行.

点评 本题主要考查了直线与圆的方程的综合运用.用待定系数法是解决圆的标准方程问题的常用方法.直线与圆的方程问题的综合,直线与圆的方程联立,利用代数的方法来解决问题,是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=-$\frac{1}{2}$,<$\overrightarrow{a}$-$\overrightarrow{c}$,$\overrightarrow{b}$-$\overrightarrow{c}$>=60°,则|$\overrightarrow{c}$|的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点为F(1,0),且过点(-1,$\frac{3}{2}$),右顶点为A,经过点F的动直线l与椭圆交于B,C两点.
(1)求椭圆方程;
(2)记△AOB和△AOC的面积分别为S1和S2,求|S1-S2|的最大值;
(3)在x轴上是否存在一点T,使得点B关于x轴的对称点落在直线TC上?若存在,则求出T点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.关于x的不等式${2^{{x^2}+2b}}<{2^{-ax}}$有唯一整数解x=1,则$\frac{b-2}{a-1}$的取值范围是($\frac{1}{4}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设Sn为等比数列{an}的前n项和,8a1-a4=0,则$\frac{S_4}{S_2}$=(  )
A.-8B.8C.5D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设Sn是等差数列{an}的前n项和,若a1=1,公差d=3,且Sn+3-Sn=57,则n=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=(x-1)2,g(x)=alnx,其中a∈R.
(Ⅰ)若曲线y=f(x)与曲线y=g(x)在x=2处的切线互相垂直,求实数a的值;
(Ⅱ)记F(x)=f(x+1)-g(x),讨论函数F(x)的单调性;
(Ⅲ)设函数G(x)=f(x)+g(x)两个极值点分别为x1,x2,且x1<x2,求证:G(x2)>$\frac{1}{4}-\frac{1}{2}$ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列说法正确的是(  )
A.“若$x=\frac{π}{3}$,则$sinx=\frac{{\sqrt{3}}}{2}$”的逆命题为真
B.a,b,c为实数,若a>b,则ac2>bc2
C.命题p:?x∈R,使得x2+x-1<0,则?p:?x∈R,使得x2+x-1>0
D.若命题?p∧q为真,则p假q真

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知平面向量$\overrightarrow a,\overrightarrow b$,$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=\frac{1}{3}|{\overrightarrow a}|$,$|{\overrightarrow a-\frac{1}{2}\overrightarrow b}|=\frac{{\sqrt{43}}}{3}$,则$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

同步练习册答案