精英家教网 > 高中数学 > 题目详情
17.向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=-$\frac{1}{2}$,<$\overrightarrow{a}$-$\overrightarrow{c}$,$\overrightarrow{b}$-$\overrightarrow{c}$>=60°,则|$\overrightarrow{c}$|的最大值为2.

分析 根据题意,求出$\overrightarrow{a}$、$\overrightarrow{b}$夹角的大小,画出图形表示$\overrightarrow{a}$-$\overrightarrow{c}$、$\overrightarrow{b}$-$\overrightarrow{c}$与$\overrightarrow{b}$-$\overrightarrow{a}$,
求出|$\overrightarrow{b}$-$\overrightarrow{a}$|的值,再根据正弦定理求出三角形外接圆的直径,即为OC的最大值.

解答 解:∵|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$|×|$\overrightarrow{b}$|cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=-$\frac{1}{2}$,
∴<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{2π}{3}$,
如图所示:
设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,
则$\overrightarrow{CA}$=$\overrightarrow{a}$-$\overrightarrow{c}$,$\overrightarrow{CB}$=$\overrightarrow{b}$-$\overrightarrow{c}$,
∴$\overrightarrow{AB}$=$\overrightarrow{b}$-$\overrightarrow{a}$,
${\overrightarrow{AB}}^{2}$=${\overrightarrow{b}}^{2}$+${\overrightarrow{a}}^{2}$-2$\overrightarrow{a}$•$\overrightarrow{b}$=1+1-2×(-$\frac{1}{2}$)=3,
∴|$\overrightarrow{AB}$|=$\sqrt{3}$,
由正弦定理得:
△OAB的外接圆直径为
2R=$\frac{AB}{sin∠ACB}$=$\frac{\sqrt{3}}{sin\frac{2π}{3}}$=2,
∴当OC为直径时,它的模最大,最大值为2,
故答案为:2.

点评 本题考查了平面向量的应用问题,也考查了四点共圆的应用问题以及正弦定理的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.关于函数f(x)=|ln|2-x||下列描述正确的有(  )个
①函数f(x)在区间(1,2)上单调递增;
②函数y=f(x)的图象关于直线x=2对称;
③若x1≠x2,但f(x1)=f(x2),则x1+x2=4;
④函数f(x)有且仅有两个零点.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线与圆x2+y2-4x+3=0相离,则双曲线离心e的取值范围是(  )
A.(1,+∞)B.($\frac{2\sqrt{3}}{3}$,+∞)C.($\frac{\sqrt{5}+1}{2}$,+∞)D.($\sqrt{2}$+1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex-ax-1(e为自然对数的底数),a>0.
(1)若a=1,求函数f(x)在x=0处的切线方程;
(2)若f(x)≥0对任意x∈R恒成立,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示:在三棱锥P-ABC中,PA⊥底面ABC,AC⊥BC,O,Q分别为AB,PA的中点,G为△AOC的重心,AC=$\sqrt{3}$,∠ABC=30°
(1)证明:QG∥平面PBC
(2)三棱锥G-PBC的体积为$\frac{3}{4}$$\sqrt{3}$,求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,并且不许有空盒,那么任意一个小球都不能放入标有相同标号的盒子中的概率是(  )
A.$\frac{3}{20}$B.$\frac{3}{16}$C.$\frac{7}{20}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设P为双曲线 C:x2-y2=1的一点,F1,F2分别为双曲线C的左、右焦点,若cos∠F1PF2=$\frac{1}{3}$,则△PF1F2的内切圆的半径为(  )
A.$\sqrt{2}$-1B.$\sqrt{2}$+1C.$\sqrt{3}$-1D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)=cos(ωx+$\frac{π}{6}$)(ω>0)的图象与直线y=1的两个交点的最短距离是π,要得到y=f(x)的图象,只需要把y=sinωx的图象(  )
A.向左平移$\frac{π}{3}$个单位B.向右平移$\frac{π}{3}$个单位
C.向左平移$\frac{π}{6}$个单位D.向右平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知⊙C过点P(1,1),且与⊙M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.
(Ⅰ)求⊙C的方程;
(Ⅱ)过点P作两条相异直线分别与⊙C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.

查看答案和解析>>

同步练习册答案