【题目】设函数f(x)=﹣x3+ax2+bx+c的导数f'(x)满足f'(﹣1)=0,f'(2)=9.
(1)求f(x)的单调区间;
(2)f(x)在区间[﹣2,2]上的最大值为20,求c的值.
(3)若函数f(x)的图象与x轴有三个交点,求c的范围.
【答案】
(1)解:函数的导数f′(x)=﹣3x2+2ax+b,
∵f'(x)满足f'(﹣1)=0,f'(2)=9,
∴ 得a=3,b=9,
则f(x)=﹣x3+3x2+9x+c,f′(x)=﹣3x2+6x+9=﹣3(x2﹣2x﹣3),
由f′(x)>0得﹣3(x2﹣2x﹣3)>0得x2﹣2x﹣3<0,得﹣1<x<3,
此时函数单调递增,即递增区间为(﹣1,3),
由f′(x)<0得﹣3(x2﹣2x﹣3)<0得x2﹣2x﹣3>0,得x<﹣1或x>3,
此时函数单调递减,即递减区间为(﹣∞,﹣1),(3,+∞);
(2)解:由(1)知,当x=﹣1时,函数取得极小值f(﹣1)=1+3﹣9+c=c﹣5,
f(﹣2)=8+12﹣18+c=2+c,f(2)=﹣8+12+18+c=22+c,
则f(x)在区间[﹣2,2]上的最大值为f(2)=22+c=20,
则c=﹣2.
(3)解:由(1)知当x=﹣1时,函数取得极小值f(﹣1)=1+3﹣9+c=c﹣5,
当x=3时,函数取得极大值f(3)=﹣27+27+27+c=27+c,
若函数f(x)的图象与x轴有三个交点,
则 得 ,得﹣27<c<5,
即c的范围是(﹣27,5).
【解析】(1)求函数的导数,根据条件建立方程组关系求出a,b的值,结合函数单调性和导数之间的关系即可求f(x)的单调区间;(2)求出函数f(x)在区间[﹣2,2]上的最大值,建立方程关系即可求c的值.(3)若函数f(x)的图象与x轴有三个交点,则等价为函数的极大值大于0,极小值小于0,解不等式即可求c的范围.
【考点精析】解答此题的关键在于理解基本求导法则的相关知识,掌握若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导,以及对函数的最大(小)值与导数的理解,了解求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.
科目:高中数学 来源: 题型:
【题目】“斐波那契数列”是数学史上一个著名数列,在斐波那契数列{an}中,a1=1,a2=1,an+2=an+1+an(n∈N*)则a8=;若a2018=m2+1,则数列{an}的前2016项和是 . (用m表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数g(x)=mx2﹣2mx+n+1(m>0)在区间[0,3]上有最大值4,最小值0.
(1)求函数g(x)的解析式;
(2)设f(x)= .若f(2x)﹣k2x≤0在x∈[﹣3,3]时恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,已知长方形ABCD中,AB=2,AD=1,E为DC的中点.将△ADE沿AE折起,使得平面ADE⊥平面ABCE.
(1)求证:平面BDE⊥平面ADE
(2)求三棱锥 C﹣BDE的体积
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax3+bx2+cx在点x0处取得极大值5,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示.求:
(1)x0的值;
(2)a,b,c的值.
(3)若曲线y=f(x)(0≤x≤2)与y=m有两个不同的交点,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com