精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x+$\frac{1}{2}$,x∈R.
(1)求函数f(x)的最小正周期;
(2)当x∈[0,π]时,求函数f(x)的单调递增区间.

分析 (1)由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin(2x-$\frac{π}{6}$),利用三角函数的周期性及其求法即可得解.
(2)根据(1)中函数的解析式及x∈[0,π],求出相位角的范围,结合正弦函数的单调性,可得f(x)的单调递增区间.

解答 解:(1)∵f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x+$\frac{1}{2}$
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1+cos2x}{2}$+$\frac{1}{2}$
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x
=sin(2x-$\frac{π}{6}$),
∴函数f(x)的最小正周期T=$\frac{2π}{2}=π$.
(2)当x∈[0,π]时,2x-$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{11π}{6}$]
∵2x-$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{π}{2}$]和[$\frac{3π}{2}$,$\frac{11π}{6}$]时,函数为增函数,
此时x∈[$\frac{π}{6}$,$\frac{π}{3}$]或x∈[$\frac{5π}{6}$,π],
故当x∈[0,π]时,f(x)的单调递增区间为[$\frac{π}{6}$,$\frac{π}{3}$]和[$\frac{5π}{6}$,π].

点评 本题考查的知识点是三角函数中的恒等变换应用,三角函数的周期性及其求法,三角函数的图象和性质,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下面是一个2×2的列联表:
y1y2总计
x1a2173
x222527
合计54b100
则表中a,b的值依次为(  )
A.44,54B.52,54C.54,46D.52,46

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四棱锥S-ABCD的底面ABCD是正方形,SA⊥平面ABCD,SA=$\sqrt{2}$AB,点E在棱SC上.
(Ⅰ)若SA∥平面BDE,求证:AC⊥平面BDE;
(Ⅱ)在(Ⅰ)的条件下,求AD与平面SCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在直角坐标系xoy中,以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C1的极坐标方程为ρ=2(cosθ+sinθ),曲线C2的参数方程为$\left\{\begin{array}{l}{x=a+4t}\\{y=4t}\end{array}\right.$(t为参数,a∈R).
(1)写出曲线C1的直角坐标方程;
(2)若曲线C1与C2有两个不同的交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a,b,c满足a<b<c,且ac<0,那么下列选项中一定成立的是(  )
A.cb2<ab2B.c(b-a)<0C.ab>acD.ac(a-c)>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=cos2x+$\sqrt{3}$sinxcosx+1.
(1)求f(x)的值域;
(2)写出f(x)的单调增区间;
(3)若x∈[0,π],求使得f(x)=1成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知M(1+cos2x,1),N(1,$\sqrt{3}$sin2x+a)( x∈R,a为常数a∈R),且y=$\overrightarrow{OM}$•$\overrightarrow{ON}$(O为坐标原点).
(1)求y关于x的函数关系式y=f(x);
(2)若x∈[0,$\frac{π}{2}$]时,f(x)的最大值为2,求a的值;
(3)在满足(2)的条件下,说明f(x)的图象可由y=2sinx的图象如何变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=$\frac{1}{3}$CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,求BF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义函数y=f(x),x∈I,若存在常数M,对于任意x1∈I,存在唯一的x2∈I,使得$\frac{f{(x}_{1})+f{(x}_{2})}{2}$=M,则称函数f(x)在I上的“均值”为M,已知f(x)=x2+log2x,x∈[1,4],则函数f(x)=x2+log2x,x∈[1,4]上的“均值”为$\frac{19}{2}$.

查看答案和解析>>

同步练习册答案