精英家教网 > 高中数学 > 题目详情
9.把y=sin(2x+$\frac{π}{4}$)的图象上所有的点向右平移$\frac{π}{8}$个单位,再把横坐标扩大到原来的2倍,则所得的图象的解析式为y=sinx.

分析 利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:把y=sin(2x+$\frac{π}{4}$)的图象上所有的点向右平移$\frac{π}{8}$个单位,
可得y=sin[2(x-$\frac{π}{8}$)+$\frac{π}{4}$]=sin2x 的图象;
再把横坐标扩大到原来的2倍,则所得的图象的解析式为y=sinx,
故答案为:y=sinx.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,三棱柱ABC-A1B1C1中,D为AA1的中点,E为BC的中点,
(1)求证:直线AE∥平面BDC1
(2)若三棱柱ABC-A1B1C1是正三棱柱,AB=2,AA1=4,求点C到平面BDC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知圆O:x2+y2=4上到直线l:x+y=m的距离为1的点有且仅有2个,则m的取值范围是(  )
A.$({-∞,}\right.-\sqrt{2})∪(\sqrt{2},+∞)$B.(-3$\sqrt{2}$,-$\sqrt{2}$)∪($\sqrt{2}$,3$\sqrt{2}$)C.$(-3\sqrt{2},3\sqrt{2})$D.$(-\sqrt{2},\sqrt{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知命题:“平面内$\overrightarrow{OA}$与$\overrightarrow{OB}$是一组不平行向量,且|$\overrightarrow{OA}}$|=|${\overrightarrow{OB}}$|=1,$\overrightarrow{OA}⊥\overrightarrow{OB}$,则任一非零向量$\overrightarrow{OP}$,$\overrightarrow{OP}$=λ1$\overrightarrow{OA}$+λ2$\overrightarrow{OB}$(λ1,λ2∈R),若点P在过点O(不与OA重合)的直线l上,则$\frac{λ_1}{λ_2}$=k(定值),反之也成立,我们称直线l为以$\overrightarrow{OA}$与$\overrightarrow{OB}$为基底的等商线,其中定值k为直线l的等商比.”为真命题,则下列结论中成立的是①③④⑤(填上所有真命题的序号).
①当k=1时,直线l经过线段AB中点;
②当k<-1时,直线l与AB的延长线相交;
③当k=-1时,直线l与AB平行;
④l1⊥l2时,对应的等商比满足k1•k2=-1;
⑤直线l1与l2的夹角记为θ(θ≠$\frac{π}{2}}$)对应的等商比为k1、k2,则tanθ=$\frac{{|{{k_1}-{k_2}}|}}{{|{1+{k_1}{k_2}}|}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知 AC,BD是圆x2+y2=4的互相垂直的两条弦,垂足为M(1,$\sqrt{2}}$),则四边形ABCD面积的最大值为M,最小值为N,则M-N的值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.A={x|y=$\sqrt{1-{x}^{2}}$},B={y|y=$\sqrt{1-{x}^{2}}$},C={x,y)|y=$\sqrt{1-{x}^{2}}$},A,B,C是同一个集合吗?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,ABCD是直角梯形,AB∥CD,BC⊥CD,CF⊥平面ABCD,DE∥CF,AD⊥DB.
(1)求证:BD⊥AE.
(2)若DE=1,CB=CD=CF=2,求二面角E-BD-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.行列式中$|\begin{array}{l}{6}&{-3}&{1}\\{2}&{5}&{k}\\{1}&{4}&{-2}\end{array}|$中元素-3的代数余子式的值为7,则k=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρ2=$\frac{15}{1+2co{s}^{2}θ}$,直线l:y=$\frac{\sqrt{3}}{3}$x.
(I)写出直线l的参数方程与极坐标方程;
(Ⅱ)设直线l与曲线C的两个交点分别为A、B,求|AB|的值.

查看答案和解析>>

同步练习册答案