精英家教网 > 高中数学 > 题目详情
已知变量x,y满足约束条件
y≤x
x+y≥2
x≤2
,则z=2x+y的最大值为(  )
A、3B、4C、6D、7
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z的几何意义,即可求出z的最大值.
解答: 解:作出不等式组对应的平面区域如图:
设z=2x+y,则y=-2x+z,
平移直线y=-2x+z,由图象可知当直线y=-2x+z经过点B时,
直线y=-2x+z的截距最大,此时z最大,
x=2
y=x
,解得
x=2
y=2
,即B(2,2),
此时z=2×2+2=6,
故选:C.
点评:本题主要考查线性规划的应用,利用z的几何意义,结合数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(θ)=
a
b
,向量
a
=(sinθ,cosθ),
b
=(sinθ,
3
sinθ+2cosθ),其中角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.
(1)若点P的坐标为(
1
2
3
2
),求f(θ)的值;
(2)若点P(x,y)为平面区域Ω
x+y≥1
x≤1
y≤1
上的一个动点,试确定θ的取值范围,并求f(θ)的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

两变量x和y成线性相关关系,对应数据如表,若线性回归方程为:
y
=1.9x+
a
.则
a
=
 
x 2 2.5 3 3.5 4
y 4 4.8 6.2 6.9 8.1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y满足约束条件
x+y-5≤0
x-2y+1≤0
x-1≥0
,则z=x+2y-1的最大值(  )
A、9B、8C、7D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

定义函数f(x)=
1,x<0
ex,x≥0
,以下几个命题中:
①存在实数a,使f(a)•f(-a)=1;
②任意a,b∈R,都有f(a2)+f(b2)≥2f(ab);
③存在实数a,b,使f(a)+f(b)=f(ab);
④任意a,b∈R,都有f(a)•f(b)≥f(a+b)
正确的命题个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

“λ<0”是“数列an=n2-2λn(n∈N*)为递增数列”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题为真命题的是(  )
A、椭圆的离心率大于1
B、双曲线
x2
m2
-
y2
n2
=-1
的焦点在x轴上
C、?a,b∈R,
a+b
2
ab
D、?x∈R,sinx+cosx=
7
5

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足不等式组
x+2y-2≥0
x-y-1≤0
x-2y+2≥0
,则x+y的最大值为(  )
A、4B、5C、6D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2ax2+(a+4)x+lnx.
(Ⅰ)若f(x)在x=
1
4
处的切线与直线4x+y=0平行,求a的值;
(Ⅱ)讨论函数f(x)的单调区间;
(Ⅲ)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明f′(x0)<0.

查看答案和解析>>

同步练习册答案