| A. | -$\frac{1}{2}$≤t≤$\frac{1}{2}$ | B. | -2≤t≤2 | ||
| C. | t≥$\frac{1}{2}$或t≤-$\frac{1}{2}$或t=0 | D. | t≥2或t≤-2或t=0 |
分析 有f(-1)=-1得f(1)=1,f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,只需要比较f(x)的最大值与t2-2at+1即可.
解答 解:若函数f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,由已知易得f(x)的最大值是1,
∴1≤t2-2at+1?2at-t2≤0,
设g(a)=2at-t2(-1≤a≤1),
欲使2at-t2≤0恒成立,
则 $\left\{\begin{array}{l}{g(-1)≤0}\\{g(1)≤0}\end{array}\right.$?t≥2或t=0或t≤-2.
故选:D.
点评 本题把函数的奇偶性,单调性与最值放在一起综合考查,是道函数方面的好题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,+∞) | B. | [2,+∞) | C. | [2,4] | D. | [2,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,4] | B. | [0,4] | C. | [0,2] | D. | (2,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,2} | B. | {1,2,3} | C. | {0,1,2} | D. | {2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -5 | B. | -4 | C. | -3 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源:2017届江西吉安一中高三上学期段考一数学(文)试卷(解析版) 题型:选择题
如图,网格纸上正方形小格的边长为1,图中粗线画出的是某四棱锥的三视图,则该四棱锥的四个侧面中面积最大的一个侧面的面积为( )
![]()
A.
B.
C.8 D.6
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com