精英家教网 > 高中数学 > 题目详情

【题目】如图,正方形与梯形所在的平面互相垂直,的中点.

(1)求证:平面

(2)求证:平面平面

(3)求平面与平面所成锐二面角的余弦值.

【答案】1)证明过程详见解析;(2)证明过程详见解析;(3.

【解析】

试题本题主要考查中位线、平行四边形的证明、线面平行、线面垂直、面面垂直、二面角等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,作出辅助线MNN中点,在中,利用中位线得到,且,结合已知条件,可证出四边形ABMN为平行四边形,所以,利用线面平行的判定,得平面;第二问,利用面面垂直的性质,判断,再利用已知的边长,可证出,则利用线面垂直的判定得平面BDE,再利用面面垂直的判定得平面平面;第三问,可以利用传统几何法证明二面角的平面角,也可以利用向量法建立空间直角坐标系,求出平面BEC和平面ADEF的法向量,利用夹角公式计算即可.

1)证明:取中点,连结

中,

分别为的中点,所以,且

.由已知,所以

,且.所以四边形为平行四边形,

所以

又因为平面,且平面

所以平面

2)证明:在正方形中,.又因为

平面平面,且平面平面

所以平面.所以

在直角梯形中,,可得

中,,所以

所以平面

又因为平面,所以平面平面

3)(方法一)延长交于

在平面内过,连结.由平面平面

,平面平面=

,于是

平面,所以

于是就是平面与平面所成锐二面角的

平面角.

,得.

,于是有.

中,.

所以平面与平面所成锐二面角的余弦值为

(方法二)由(2)知平面,且

为原点,所在直线分别为轴,建立空间直角坐标系.

易得.平面的一个法向量为.为平面的一个法向量,因为所以,令,得

所以为平面的一个法向量.

设平面与平面所成锐二面角为

.所以平面与平面所成锐二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm.根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.

1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在之外的零件数,求X的数学期望;

2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)试说明上述监控生产过程方法的合理性;

(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得,其中xi为抽取的第i个零件的尺寸,.

用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μσ(精确到0.01.

附:若随机变量Z服从正态分布,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆E与圆外切,并与直线相切,记动圆圆心E的轨迹为曲线C.

1)求曲线C的方程;

2)过点的直线l交曲线CAB两点,若曲线C上存在点P使得,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)当时,讨论函数的单调性;

2)当,且时,

i)若有两个极值点,求证:

ii)若对任意的,都有成立,求正实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有4个不同的小球,全部放入4个不同的盒子内,恰好有两个盒子不放球的不同放法的总数为____________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.②相关指数来刻画回归的效果,值越大,说明模型的拟合效果越好.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.其中正确命题的个数是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示.

1)估计这次考试的平均分;

2)假设分数在[90100]的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从95769788691006个数中任取2个数,求这2个数恰好是两个学生的成绩的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

(Ⅰ)若的必要条件,求实数的取值范围;

(Ⅱ)若,“”为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,底面的中点,是线段上的一点,且,连接.

(1)求证:平面

(2)求点到平面的距离.

查看答案和解析>>

同步练习册答案