精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)求函数的最小正周期;

(2)若存在,使不等式成立,求实数的取值范围.

【答案】(1)

……………………4

函数f(x)的最小正周期……………………6

(2)时,

,即时,f(x)取最小值-1 ………9

所以使题设成立的充要条件是

m的取值范围是(1,∞) ………10

【解析】

(Ⅰ)利用三角函数的恒等变换化简函数fx)的解析式为2sin2x+),从而求出它的最小正周期.(Ⅱ)根据,可得 sin2x0+[1]fx0)的值域为[12],若存在使不等式fx0)<m成立,m需大于fx0)的最小值.

(Ⅰ)

[2sinx+cosx]cosxsin2x++cos2x

sin2x+cos2x=2sin2x+

∴函数fx)的最小周期T

(Ⅱ),∴2x0+[],∴sin2x0+[1]

fx0)的值域为[12]

∵存在,使fx)<m成立,∴m>﹣1

故实数m的取值范围为(﹣1+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题 ,命题 .

1)若,求实数的值;

2)若的充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求在区间上的取值范围.

)当时,,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线C的参数方程为 (α为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+ )= .l与C交于A、B两点. (Ⅰ)求曲线C的普通方程及直线l的直角坐标方程;
(Ⅱ)设点P(0,﹣2),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了分析在一次数学竞赛中甲、乙两个班的数学成绩,分别从甲、乙两个班中随机抽取了10个学生的成绩,成绩的茎叶图如下:

)根据茎叶图,计算甲班被抽取学生成绩的平均值及方差

)若规定成绩不低于90分的等级为优秀,现从甲、乙两个班级所抽取成绩等级为优秀的学生中,随机抽取2人,求这两个人恰好都来自甲班的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列的前项和为,满足.

(Ⅰ)(i)求数列的通项公式;

(ii)已知对于,不等式恒成立,求实数的最小值;

(Ⅱ) 数列的前项和为,满足,是否存在非零实数,使得数列为等比数列? 并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱的侧棱垂直于底面,分别是的中点.

(Ⅰ)证明:平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,且∠DAB=60°.点E是棱PC的中点,平面ABE与棱PD交于点F. (Ⅰ)求证:AB∥EF;
(Ⅱ)若PA=PD=AD,且平面PAD⊥平面ABCD,求平面PAF与平面AFE所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题pf(x)=-x2+2ax+1-ax∈[0,1]时的最大值不超过2,命题q:正数xy满足x+2y=8,且 恒成立. 若p∨(q)为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案