分析 变形a+b=$\frac{1}{2}$(2+a+a+2b)-1=$\frac{1}{2}$(2+a+a+2b)$(\frac{2}{2+a}+\frac{1}{a+2b})$-1=$\frac{1}{2}(3+\frac{2(a+2b)}{2+a}+\frac{2+a}{a+2b})$-1,再利用基本不等式的性质即可得出.
解答 解:a+b=$\frac{1}{2}$(2+a+a+2b)-1=$\frac{1}{2}$(2+a+a+2b)$(\frac{2}{2+a}+\frac{1}{a+2b})$-1=$\frac{1}{2}(3+\frac{2(a+2b)}{2+a}+\frac{2+a}{a+2b})$-1≥$\frac{1}{2}(3+2\sqrt{\frac{2(a+2b)}{2+a}×\frac{2+a}{a+2b}})$-1=$\frac{1}{2}+\sqrt{2}$,当且仅当a=$\sqrt{2}$,b=$\frac{1}{2}$时取等号.
故答案分别为:$\sqrt{2}+\frac{1}{2}$;$\sqrt{2}$.
点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=lnx | B. | y=cosx | C. | y=-x2 | D. | $y={({\frac{1}{2}})^x}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 7 | B. | 9 | C. | 7或9 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com