精英家教网 > 高中数学 > 题目详情

在DABC中,角A、B、C的对边分别为a、b、c,且角A、B都是锐角,a=6,b=5,.
(1) 求的值;
(2) 设函数,求的值.

(1)    (2)

解析试题分析:
(1)在三角形ABC中,可以利用A,B角的正弦定理把A角的正弦值求出来,因为A,B角都是锐角,所以利用正余弦之间的关系可以求出A,B角的余弦值,再根据三角形的三个内角和为,可得,则利用诱导公式和余弦的和差角公式即可利用A,B角的正余弦值来表示角C的余弦值.进而求的角c的余弦值.
(2)把带入函数的解析式,利用诱导公式(奇变偶不变,符号看象限)可得,利用余弦值的二倍角公式可以利用角A的正弦值或者余弦值来求的,进而得到的值.
试题解析:
(1)由正弦定理,得.        (3分)
∵A、B是锐角,∴ ,           (4分)
 ,            (5分)
 ,得   (6分)
        (7分)
       (8分)
(2)由(1)知
                  (11分)
                                   (12分)
考点:正余弦值的关系 正余弦值的和差角公式 诱导公式 余弦倍角公式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

中,角A,B,C的对边分别为abc,已知.
(1)求的值;
(2)若的中点,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,已知边上的一点,,,.

(1)求的大小;
(2)求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在△ABC中,角A,B,C的对边分别是a,b,c,满足,关于x的不等式x2cosC+4xsinC+6≥0对任意的x∈R恒成立.
(1)求角A的值;
(2)求f(C)=2sinC·cosB的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若,求的取值范围;
(2)设△的内角A、B、C所对的边分别为a、b、c,已知为锐角,,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)在中,角所对的边分别为,已知,,,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数 三个内角的对边分别为.
(1)求的单调递增区间;
(2)若,求的面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.
(1)求B;
(2)若b=2,求△ABC面积的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在锐角△ABC中,角A、B、C所对的边长分别为a、b、c.向量m=(1,cosB),n=(sinB,-),且m⊥n.
(1)求角B的大小;
(2)若△ABC面积为10,b=7,求此三角形周长.

查看答案和解析>>

同步练习册答案