精英家教网 > 高中数学 > 题目详情
正方形ABCD中,M为AD中点,N为AB的中点,沿CM,CN分别将△CDM和△CBN折起,使CB与CD重合,设B点与D点重合于P点,DM的中点折起后变成PM的中点T,则异面直线CT和PN所成角的余弦值为
 
考点:异面直线及其所成的角
专题:空间位置关系与距离
分析:取AN中点S,由已知得PN⊥PT,又PN⊥PC,从而PN⊥平面CMP.由此能求出异面直线CT和PN所成角的余弦值.
解答: 解:取AN中点S,
∵PN2+PT2=TS2+SM2=TN2
∴PN⊥PT,
又PN⊥PC,
∴PN⊥平面CMP.
又CT?平面CMP,
∴PN⊥CT,
∴异面直线CT和PN所成角的余弦值为0.
故答案为:0.
点评:本题考查异面直线CT与PN所成角的余弦值的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中,真命题为(  )
A、若x2=1,则x=1
B、若
1
x
=
1
y
,则x=y
C、若x=y,则
x
=
y
D、若x2<y2,则x<y

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)满足f(x)+f(y)=f(xy),且f(5)=m,f(7)=n,即f(175)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

AB是过椭圆
x2
5
+
y2
4
=1
的一个焦点F的弦,若AB的倾斜角为
π
3
,则弦AB的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,平行四边形ABCD中,AB=2,AD=2
2
,且∠BAD=45°,以BD为折线,把△ABD折起,使平面ABD⊥平面CBD,连接AC.

(1)求异面直线AD与BC所成角大小;
(2)求二面角B-AC-D平面角的大小; 
(3)求四面体ABCD外接球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2+4lnx,若存在满足1≤x0≤3的实数x0,使得曲线f(x)在点(x0,f(x0))处的切线与直线x+my-10=0垂直,则实数m的取值范围是(  )
A、[5,+∞)
B、[4,5]
C、[4,
13
3
]
D、(-∞,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一个质点从原点出发,在与x轴、y轴平行的方向按(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→(2,1)→(2,2)→(1,2)…的规律向前移动,且每秒钟移动一个单位长度,那么到第2014秒时,这个质点所处位置的坐标是(  )
A、(10,44)
B、(11,44)
C、(44,10)
D、(44,11)

查看答案和解析>>

科目:高中数学 来源: 题型:

(logax)logax=x,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax-a-x(a>0且a≠1).
(Ⅰ)若f(1)>0,试求不等式f(x2+2x)+f(x-4)>0的解集;
(Ⅱ)若f(1)=
3
2
,且g(x)=a2x+a-2x-2mf(x),且g(x)在[1,+∞)上的最小值为-2,求m的值.

查看答案和解析>>

同步练习册答案