| A. | $[-\frac{3}{4},0)$ | B. | [-1,1) | C. | $[-\frac{1}{2},1)$ | D. | [-1,0) |
分析 先根据条件画出图形,根据条件可求出$\frac{1}{2}≤|\overrightarrow{OC}|<1$,并求出$\overrightarrow{OM}•\overrightarrow{ON}=-1$,$\overrightarrow{OM}+\overrightarrow{ON}=\overrightarrow{0}$,而$\overrightarrow{CM}=\overrightarrow{OM}-\overrightarrow{OC}$,$\overrightarrow{CN}=\overrightarrow{ON}-\overrightarrow{OC}$,带入$\overrightarrow{CM}•\overrightarrow{CN}$并进行数量积的运算便可得到$\overrightarrow{CM}•\overrightarrow{CN}=-1+{\overrightarrow{OC}}^{2}$,这样便可得出$\overrightarrow{CM}•\overrightarrow{CN}$的取值范围.
解答
解:如图,
∵OA=OB=1,∠AOB=120°;
∴O到直线AB的距离d=$\frac{1}{2}$;
∴$\frac{1}{2}≤|\overrightarrow{OC}|<1$;
∴$\overrightarrow{CM}•\overrightarrow{CN}=(\overrightarrow{OM}-\overrightarrow{OC})•(\overrightarrow{ON}-\overrightarrow{OC})$
=$\overrightarrow{OM}•\overrightarrow{ON}-(\overrightarrow{OM}+\overrightarrow{ON})•\overrightarrow{OC}+{\overrightarrow{OC}}^{2}$
=$-1+{\overrightarrow{OC}}^{2}$;
∴$-\frac{3}{4}≤\overrightarrow{CM}•\overrightarrow{CN}<0$;
∴$\overrightarrow{CM}•\overrightarrow{CN}$的取值范围为$[-\frac{3}{4},0)$.
故选A.
点评 考查单位圆的定义,数形结合解题的方法,向量减法的几何意义,向量数量积的运算,不等式的性质.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{1}{10}$ | C. | $\frac{1}{8}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5π}{6}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com