分析 将式子“a8(a4+2a6+a8)”展开,由等比数列的性质:若m,n,p,q∈N*,且m+n=p+q,则有aman=apaq,得a8(a4+2a6+a8)=(a6+a8)2,将条件代入能求出结果.
解答 解:∵等比数列{an},且a6+a8=4,
∴a8(a4+2a6+a8)=${a}_{8}{a}_{4}+2{a}_{8}{a}_{6}+{{a}_{8}}^{2}$
=${{a}_{6}}^{2}+2{{a}_{6}{a}_{8}+{a}_{8}}^{2}$=(a6+a8)2=16.
故答案为:16.
点评 本题考查等比数列第8项与若干项和的乘积的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}-1$ | B. | $\sqrt{2}$ | C. | $\sqrt{2}+1$ | D. | $\sqrt{2}+2$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3或1 | B. | -1或3 | C. | ±3 | D. | ±1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com