精英家教网 > 高中数学 > 题目详情
18.已知中心在坐标系原点,焦点在y轴上的椭圆离心率为$\frac{1}{2}$,直线y=2与椭圆的两个交点间的距离为6.
(1)求椭圆的标准方程;
(2)过下焦点的直线l交椭圆于A,B两点,点P为椭圆的上顶点,求△PAB面积的最大值.

分析 (1)根据题意,分析可得2c=a①,进而可得椭圆过点(3,2),代入椭圆方程得$\frac{4}{a^2}+\frac{9}{b^2}=1$②,结合椭圆的几何性质分析可得a2、b2的值,将a2、b2的值代入椭圆的方程即可得答案;
(2)设直线l的方程为y=kx-2.联立直线与椭圆的方程可得(4+3k2)x2-12kx-36=0,由根与系数的关系分析可得|AB|的长,由点到直线的距离公式可得P(0,4)到直线AB的距离d,则可以用k表示△PAB面积S,利用基本不等式的性质分析可得答案.

解答 解:(1)根据题意,因为$e=\frac{1}{2}$,所以2c=a①
又直线y=2与椭圆的两个交点间的距离为6.
所以椭圆过点(3,2),代入椭圆方程得$\frac{4}{a^2}+\frac{9}{b^2}=1$②
又a2=b2+c2
由①②③得a2=16,b2=12
所以椭圆方程为$\frac{y^2}{16}+\frac{x^2}{12}=1$;
(2)设直线l的方程为y=kx-2
由$\left\{{\begin{array}{l}{y=kx-2}\\{\frac{y^2}{16}+\frac{x^2}{12}=1}\end{array}}\right.$得(4+3k2)x2-12kx-36=0
显然△>0,设A(x1,y1),B(x2,y2
则${x_1}+{x_2}=\frac{12k}{{4+3{k^2}}},{x_1}{x_2}=-\frac{36}{{4+3{k^2}}}$,
所以$\begin{array}{l}|{AB}|=\sqrt{1+{k^2}}\sqrt{{{({x_1}+{x_2})}^2}-4{x_1}{x_2}}=\sqrt{1+{k^2}}\sqrt{{{(\frac{12k}{{4+3{k^2}}})}^2}+4×\frac{36}{{4+3{k^2}}}}\end{array}$=$24×\frac{{1+{k^2}}}{{4+3{k^2}}}$
又点P(0,4)到直线AB的距离为$d=\frac{6}{{\sqrt{1+{k^2}}}}$
所以$S=\frac{1}{2}|{AB}|×d=72×\frac{{\sqrt{1+{k^2}}}}{{4+3{k^2}}}$,
令$t=\sqrt{1+{k^2}}$,则t≥1,k2=t2-1
所以$S=\frac{72t}{{4+3({t^2}-1)}}=\frac{72t}{{3{t^2}+1}}=\frac{72}{{3t+\frac{1}{t}}}$
因为t≥1,$3t+\frac{1}{t}$在[1,+∞)上单调递增
所以当t=1时,即k=0时,$3t+\frac{1}{t}$取最小值4
所以Smax=18.

点评 本题考查椭圆的几何性质,涉及直线与椭圆的位置关系,关键要求出椭圆的标准方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.如图,△ABC是直角三角形,∠ABC=90°,PA⊥平面ABC,此图中直角三角形的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)双曲线与椭圆$\frac{x^2}{27}+\frac{y^2}{36}=1$有相同焦点,且焦点到渐近线的距离等于$\sqrt{5}$,求双曲线的标准方程;
(2)已知顶点在原点,焦点在y轴上的抛物线被直线y=2x+1截得的弦长为$\sqrt{15}$,求抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知抛物线C:y2=6x的焦点为F,过点F的直线l交抛物线于两点A,B,交抛物线的准线于点C,若$\overrightarrow{FC}=3\overrightarrow{FA}$,则|FB|=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知等比数列{an},且a6+a8=4,则a8(a4+2a6+a8)的值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.化简:$\frac{cos(2π+α)tan(π+α)}{{cos(\frac{π}{2}-α)}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A=$\{x||x|≤2\},B=\{x|\sqrt{x}≤5\;x∈Z\}$,则A∩B=(  )
A.(0,2)B.[0,2]C.{0,1,2}D.{0,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知两座灯塔A和B与海洋观察站C的距离都等于1km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则求:灯塔A与灯塔B的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.演绎推理“因为f′(x0)=0时,x0是f(x)的极值点,而对于函数f(x)=x3,f′(0)=0,所以0是函数f(x)=x3的极值点.”所得结论错误的原因是(  )
A.大前提错误B.小前提错误C.推理形式错误D.全不正确

查看答案和解析>>

同步练习册答案