精英家教网 > 高中数学 > 题目详情
8.如图,△ABC是直角三角形,∠ABC=90°,PA⊥平面ABC,此图中直角三角形的个数为(  )
A.1B.2C.3D.4

分析 推导出AB⊥BC,PA⊥BC,从而BC⊥平面PAB,由此能求出图中直角三角形的个数.

解答 解:∵△ABC是直角三角形,∠ABC=90°,PA⊥平面ABC,
∴AB⊥BC,PA⊥BC,
∵AB∩PA=A,∴BC⊥平面PAB,
∴图中直角三角形有△ABC(∠ABC是直角 ),
△PAC(∠PAC是直角),△PAB(∠PAB是直角),△PBC(∠PBC是直角),
∴图中直角三角形有4个.
故选:D.

点评 本题考查几何体中直角三角形的个数的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、考查函数与方程思想、数形结合思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在△ABC中,角A、B、C所对的边分别为a,b,c,且b=3,c=1,A=60°.
(1)求a的值;
(2)求sinB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.${∫}_{-1}^{1}$(x4tanx+x3+1)dx的值为(  )
A.3B.2C.$\frac{3}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知在平面直角坐标系中,O是坐标原点,动圆P经过点F(0,1),且与直线l1:y=-1相切.
(Ⅰ)求动圆圆心P的轨迹方程C;
(Ⅱ)过F(0,1)的直线m交曲线C于A、B两点,过A、B作曲线C的切线l1,l2,直线l1,l2交于点M,求△MAB的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆${C_1}:\frac{x^2}{8}+\frac{y^2}{4}=1$的左右焦点分别为F1,F2,直线l1过点F1,且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M.
(1)求点M的轨迹C2的方程;
(2)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.从三件正品、一件次品中随机取出两件,则取出的产品中一件正品,一件次品的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{8}$D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若$z=\frac{1-i}{1+i}$(i为虚数单位)的共轭复数为(  )
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知定义在R上的函数f(x)满足:y=f(x-1)的图象关于(1,0)点对称,且当x≥0时恒有f(x+2)=f(x),当x∈[0,2)时,f(x)=ex-1,则f(2016)+f(-2017)=(  )(其中e为自然对数的底)
A.1-eB.e-1C.-1-eD.e+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知中心在坐标系原点,焦点在y轴上的椭圆离心率为$\frac{1}{2}$,直线y=2与椭圆的两个交点间的距离为6.
(1)求椭圆的标准方程;
(2)过下焦点的直线l交椭圆于A,B两点,点P为椭圆的上顶点,求△PAB面积的最大值.

查看答案和解析>>

同步练习册答案