精英家教网 > 高中数学 > 题目详情
已知数列{2n-11},则Sn的最小值为(  )
A、S1
B、S5
C、S6
D、S11
考点:数列的求和
专题:等差数列与等比数列
分析:由数列{2n-11}的前5项是负数,且数列是增数列,能求出结果.
解答: 解:令an=2n-11=0,
解得n=5.5,∴n>5时,an>0,
Sn的最小值为S5
故选:B.
点评:本题考查数列的前n项和的最小值的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=(
1
2
x-4的零点为(  )
A、-2B、-1C、0D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)是定义在R上的可导函数,且满足(x-1)f′(x)≥0,则必有(  )
A、f(0)+f(2)<2f(1)
B、f(0)+f(2)>2f(1)
C、f(0)+f(2)≤2f(1)
D、f(0)+f(2)≥2f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的焦距为2
5
,若抛物线x2=16y的焦点到双曲线C的渐近线的距离为
8
5
5
,则双曲线C的方程为(  )
A、
x2
8
-
y2
2
=1
B、
x2
2
-
y2
8
=1
C、
x2
4
-y2=1
D、x2-
y2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=2n,则该数列的前n项和Sn=(  )
A、2n-1
B、2n-2
C、2n+1-1
D、2n+1-2

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>0,b>0,则p=
b2
a
+
a2
b
与q=a+b的大小关系为(  )
A、p>qB、p≥q
C、p<qD、p≤q

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线kx-y+2k-1=0恒过定点A,点A也在直线mx+ny+1=0上,其中m、n均为正数,则
1
m
+
2
n
的最小值为(  )
A、2B、4C、8D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

下列有关命题的说法正确的是(  )
A、若向量
a
b
满足
a
b
=0,则
a
=0或者
b
=0
B、“α=30”是“sinα=
1
2
”的必要不充分条件
C、命题“?x∈R,使得x2+x-1<0”的否定是:“?x∈R,均有x2+x-1>0”
D、命题“若x=y,则sinx=siny”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,E,F分别在矩形ABCD的边AD,BC上,AB=2,AD=5,AE=1,BF=3,现将四边形AEFB沿EF折起到A′EFB′,使DF⊥B′F.
(Ⅰ)求证:A′E∥平面B′DF
(Ⅱ)求证:平面A′EFB′⊥平面CDEF;
(Ⅲ)求直线B′D与平面A′EFB′所成角的余弦值.

查看答案和解析>>

同步练习册答案