【题目】某地区甲、乙、丙三所单位进行招聘,其中甲单位招聘2名,乙单位招聘2名,丙单位招聘1名,并且甲单位要至少招聘一名男生,现有3男3女参加三所单位的招聘,则不同的录取方案种数为( )
A.36B.72C.108D.144
科目:高中数学 来源: 题型:
【题目】四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC
底面BCDE,BC=2,CD=
,AB=AC
![]()
(1)证明
.
(2)设侧面ABC为等边三角形,求二面角C-AD-E的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为迎接“五一”节的到来,某单位举行“庆五一,展风采”的活动.现有6人参加其中的一个节目,该节目由
两个环节可供参加者选择,为增加趣味性,该单位用电脑制作了一个选择方案:按下电脑键盘“Enter”键则会出现模拟抛两枚质地均匀骰子的画面,若干秒后在屏幕上出现两个点数
和
,并在屏幕的下方计算出
的值.现规定:每个人去按“Enter”键,当显示出来的
小于
时则参加
环节,否则参加
环节.
(1)求这6人中恰有2人参加该节目
环节的概率;
(2)用
分别表示这6个人中去参加该节目
两个环节的人数,记
,求随机变量
的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,射线OA、OB分别与x轴正半轴成45°和30°角,过点P(1,0)作直线AB分别交OA、OB于A、B两点,当AB的中点C恰好落在直线y=
x上时,求直线AB的方程.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 设椭圆
的左焦点为
,左顶点为
,顶点为B.已知
(
为原点).
(Ⅰ)求椭圆的离心率;
(Ⅱ)设经过点
且斜率为
的直线
与椭圆在
轴上方的交点为
,圆
同时与
轴和直线
相切,圆心
在直线
上,且
,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.
(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;
(2)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向“观光、休闲、会展”三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数
(万人)与年份
的数据:
第 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
旅游人数 | 300 | 283 | 321 | 345 | 372 | 435 | 486 | 527 | 622 | 800 |
![]()
该景点为了预测2021年的旅游人数,建立了
与
的两个回归模型:
模型①:由最小二乘法公式求得
与
的线性回归方程
;
模型②:由散点图的样本点分布,可以认为样本点集中在曲线
的附近.
(1)根据表中数据,求模型②的回归方程
.(
精确到个位,
精确到0.01).
(2)根据下列表中的数据,比较两种模型的相关指数
,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).
回归方程 | ① | ② |
| 30407 | 14607 |
参考公式、参考数据及说明:
①对于一组数据
,其回归直线
的斜率和截距的最小二乘法估计分别为
.②刻画回归效果的相关指数
;③参考数据:
,
.
|
|
|
|
|
|
5.5 | 449 | 6.05 | 83 | 4195 | 9.00 |
表中
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f(x)为“同域函数”,区间A为函数f(x)的一个“同域区间”.给出下列四个函数:
①
;②f(x)=x2-1;③f(x)=|2x-1|;④f(x)=log2(x-1).
存在“同域区间”的“同域函数”的序号是__________.(请写出所有正确结论的序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com