精英家教网 > 高中数学 > 题目详情

【题目】为迎接五一节的到来,某单位举行庆五一,展风采的活动.现有6人参加其中的一个节目,该节目由两个环节可供参加者选择,为增加趣味性,该单位用电脑制作了一个选择方案:按下电脑键盘Enter键则会出现模拟抛两枚质地均匀骰子的画面,若干秒后在屏幕上出现两个点数,并在屏幕的下方计算出的值.现规定:每个人去按Enter键,当显示出来的小于时则参加环节,否则参加环节.

1)求这6人中恰有2人参加该节目环节的概率;

2)用分别表示这6个人中去参加该节目两个环节的人数,记,求随机变量的分布列与数学期望.

【答案】12)见解析

【解析】

1)利用古典概型概率公式得出选择参加环节的概率,选择参加环节的概率,再利用独立重复实验概率公式,即可得出答案;

2)得出的可能取值以及对应概率,即可得出分布列以及期望.

1)依题意得,由屏幕出现的点数形成的有序数对,一共有种等可能的基本事件

符合的有24

所以选择参加环节的概率为,选择参加环节的概率为

所以这6人中恰有2人参加该节目环节的概率

2)依题意得的可能取值为

所以的分布列为

0

2

4

6

数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,已知对任意,都有,且成立.令,其中为常数.

1)当时,求函数的所有零点;

2)当时,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为,以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2cosθ.

1)若曲线C1方程中的参数是α,且C1C2有且只有一个公共点,求C1的普通方程;

2)已知点A01),若曲线C1方程中的参数是t0απ,且C1C2相交于PQ两个不同点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为若存在闭区间使得函数满足

上是单调函数 上的值域是,则称区间是函数 和谐区间

下列结论错误的是

A.函数 存在 和谐区间

B.函数 存在 和谐区间

C.函数 存在 和谐区间

D.函数 存在 和谐区间

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学习雷锋精神前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好;单位对学习雷锋精神前后各半年内餐椅的损坏情况作了一个大致统计,具体数据如表:

损坏餐椅数

未损坏餐椅数

学习雷锋精神前

50

150

200

学习雷锋精神后

30

170

200

80

320

400

求:学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学习雷锋精神是否有关?

请说明是否有以上的把握认为损毁餐椅数量与学习雷锋精神

有关?参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形的中心为,一边所在直线的方程为,求其他三边所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区甲、乙、丙三所单位进行招聘,其中甲单位招聘2名,乙单位招聘2名,丙单位招聘1名,并且甲单位要至少招聘一名男生,现有3男3女参加三所单位的招聘,则不同的录取方案种数为( )

A.36B.72C.108D.144

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(Ⅰ)讨论的单调性;

(Ⅱ)当时,证明:

(Ⅲ)求证:对任意正整数,都有 (其中为自然对数的底数).

查看答案和解析>>

同步练习册答案