精英家教网 > 高中数学 > 题目详情
13.曲线C的参数方程为$\left\{\begin{array}{l}{x=cosθ}\\{y=1+sinθ}\end{array}\right.$(θ为参数),直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$.
(1)求曲线C的普通方程及直线l的直角坐标方程;
(2)判断直线l与曲线C的位置关系.

分析 (1)曲线C的参数方程为$\left\{\begin{array}{l}{x=cosθ}\\{y=1+sinθ}\end{array}\right.$(θ为参数),利用cos2θ+sin2θ=1,可得普通方程.直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$,展开为$\frac{\sqrt{2}}{2}(ρsinθ+ρcosθ)$=$\sqrt{2}$,利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可化为直角坐标方程.
(2)圆心C(0,1)到直线l的距离d=$\frac{|0+1-2|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,与圆的r比较即可判断出位置关系.

解答 解:(1)曲线C的参数方程为$\left\{\begin{array}{l}{x=cosθ}\\{y=1+sinθ}\end{array}\right.$(θ为参数),利用cos2θ+sin2θ=1,可得x2+(y-1)2=1.
直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$,展开为$\frac{\sqrt{2}}{2}(ρsinθ+ρcosθ)$=$\sqrt{2}$,化为x+y-2=0.
(2)圆心C(0,1)到直线l的距离d=$\frac{|0+1-2|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$<1=r.
∴直线l与曲线C相交.

点评 本题考查了曲线的参数方程化为直角坐标方程、极坐标方程化为直角坐标方程、直线与圆的位置关系、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.某校高一(1)班共有54人,如图是该班期中考试数学成绩的频率分布直方图,则成绩在[100,120]内的学生人数为(  )
A.36B.27C.22D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}是等差数列,且a4=a2+4,a3=6,则数列{an}的通项公式是2n,数列$\left\{{{2^{a_n}}}\right\}$的前n项和Tn为$\frac{4}{3}({4}^{n}-1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某商区停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时的部分按1小时计算).现有甲、乙二人在该商区临时停车,两人停车都不超过4小时.
(Ⅰ)设甲停车付费a元.依据题意,填写下表:
甲停车时长
(小时)
(0,1](1,2](2,3](3,4]
甲停车费a
(元)
(Ⅱ)若每人停车的时长在每个时段的可能性相同,求甲、乙二人停车付费之和为36元的概率;
(Ⅲ)若甲停车1小时以上且不超过2小时的概率为$\frac{1}{3}$,停车付费多于14元的概率为$\frac{5}{12}$,求甲停车付费恰为6元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知i为虚数单位,则  $\frac{1}{i}+{i^{2015}}$=(  )
A.0B.2C.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.书架上有语文、数学、英语书若干本,它们的数量比依次为2:4:5,现用分层抽样的方法从书架上抽取一个样本,若抽出的语文书为10本,则应抽出的英语书的本数为(  )
A.20B.25C.30D.35

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=-x2+ax-b,若a,b都是从区间[0,3]任取的一个数,则f(1)>0成立的概率是(  )
A.$\frac{2}{9}$B.$\frac{4}{9}$C.$\frac{5}{9}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知抛物线C:y2=8x的焦点为F,直线l与C相切于Q点,P是l上一点(不与Q重合),若以线段PQ为直径的圆恰好经过F,则|PF|的最小值是4.

查看答案和解析>>

同步练习册答案