1£®Ä³ÉÌÇøÍ£³µ³¡ÁÙʱͣ³µ°´Ê±¶ÎÊÕ·Ñ£¬Êշѱê׼Ϊ£ºÃ¿Á¾Æû³µÒ»´ÎÍ£³µ²»³¬¹ý1СʱÊÕ·Ñ6Ôª£¬³¬¹ý1СʱµÄ²¿·ÖÿСʱÊÕ·Ñ8Ôª£¨²»×ã1СʱµÄ²¿·Ö°´1Сʱ¼ÆË㣩£®ÏÖÓмס¢ÒÒ¶þÈËÔÚ¸ÃÉÌÇøÁÙʱͣ³µ£¬Á½ÈËÍ£³µ¶¼²»³¬¹ý4Сʱ£®
£¨¢ñ£©Éè¼×Í£³µ¸¶·ÑaÔª£®ÒÀ¾ÝÌâÒ⣬ÌîдÏÂ±í£º
¼×Í£³µÊ±³¤
£¨Ð¡Ê±£©
£¨0£¬1]£¨1£¬2]£¨2£¬3]£¨3£¬4]
¼×Í£³µ·Ña
£¨Ôª£©
£¨¢ò£©ÈôÿÈËÍ£³µµÄʱ³¤ÔÚÿ¸öʱ¶ÎµÄ¿ÉÄÜÐÔÏàͬ£¬Çó¼×¡¢ÒÒ¶þÈËÍ£³µ¸¶·ÑÖ®ºÍΪ36ÔªµÄ¸ÅÂÊ£»
£¨¢ó£©Èô¼×Í£³µ1СʱÒÔÉÏÇÒ²»³¬¹ý2СʱµÄ¸ÅÂÊΪ$\frac{1}{3}$£¬Í£³µ¸¶·Ñ¶àÓÚ14ÔªµÄ¸ÅÂÊΪ$\frac{5}{12}$£¬Çó¼×Í£³µ¸¶·ÑǡΪ6ÔªµÄ¸ÅÂÊ£®

·ÖÎö £¨¢ñ£©ÓÉÌâÒâ¿ÉµÃ±í¸ñ£»
£¨¢ò£©¼×Í£³µ¸¶·ÑaÔª£¬ÉèÒÒÍ£³µ¸¶·ÑbÔª£¬ÆäÖÐa£¬b=6£¬14£¬22£¬30£®ÁоٿɵÃ×ܵĻù±¾Ê¼þ£¬ÓɸÅÂʹ«Ê½¿ÉµÃ£»
£¨¢ó£©ÓɶÔÁ¢Ê¼þµÄ¸ÅÂʹ«Ê½¿ÉµÃ£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉµÃ±í¸ñÈçÏ£º

¼×Í£³µÊ±³¤
£¨Ð¡Ê±£©
£¨0£¬1]£¨1£¬2]£¨2£¬3]£¨3£¬4]
¼×Í£³µ·Ña
£¨Ôª£©
6142230
£¨¢ò£©¼×Í£³µ¸¶·ÑaÔª£¬ÉèÒÒÍ£³µ¸¶·ÑbÔª£¬ÆäÖÐa£¬b=6£¬14£¬22£¬30£®
Ôò¼×¡¢ÒÒ¶þÈ˵ÄÍ£³µ·ÑÓù¹³ÉµÄ»ù±¾Ê¼þ¿Õ¼äΪ£º£¨6£¬6£©£¬£¨6£¬14£©£¬£¨6£¬22£©£¬
£¨6£¬30£©£¬£¨14£¬6£©£¬£¨14£¬14£©£¬£¨14£¬22£©£¬£¨14£¬30£©£¬£¨22£¬6£©£¬£¨22£¬14£©£¬
£¨22£¬22£©£¬£¨22£¬30£©£¬£¨30£¬6£©£¬£¨30£¬14£©£¬£¨30£¬22£©£¬£¨30£¬30£©£¬¹²16ÖÖÇéÐΣ®
ÆäÖУ¨6£¬30£©£¬£¨14£¬22£©£¬£¨22£¬14£©£¬£¨30£¬6£©Õâ4ÖÖÇéÐηûºÏÌâÒ⣮
¹Ê¡°¼×¡¢ÒÒ¶þÈËÍ£³µ¸¶·ÑÖ®ºÍΪ36Ôª¡±µÄ¸ÅÂÊΪ$P=\frac{4}{16}=\frac{1}{4}$£»
£¨¢ó£©¡°¼×ÁÙʱͣ³µ¸¶·ÑǡΪ6Ôª¡±ÎªÊ¼þA£¬
Ôò $P£¨A£©=1-£¨\frac{1}{3}+\frac{5}{12}£©=\frac{1}{4}$£®
¡à¼×ÁÙʱͣ³µ¸¶·ÑǡΪ6ÔªµÄ¸ÅÂÊÊÇ$\frac{1}{4}$

µãÆÀ ±¾Ì⿼²é¹Åµä¸ÅÐͼ°Æä¸ÅÂʹ«Ê½£¬ÁоÙÊǽâ¾öÎÊÌâµÄ¹Ø¼ü£¬Êô»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖª$\overrightarrow{m}$=£¨sin¦Øx£¬-1£©£¬$\overrightarrow{n}$=£¨1£¬-$\sqrt{3}$cos¦Øx£©£¨ÆäÖÐx¡ÊR£¬¦Ø£¾0£©£¬f£¨x£©=$\overrightarrow{m}$•$\overrightarrow{n}$£¬ÇÒº¯Êýf£¨x£©Í¼ÏóµÄij¸ö×î¸ßµãµ½ÆäÏàÁÚµÄ×îµÍµãÖ®¼äµÄ¾àÀëΪ5£¬
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©Èôf£¨$\frac{3¦È}{¦Ð}$£©=$\frac{6}{5}$£¨ÆäÖЦȡʣ¨-$\frac{5¦Ð}{6}$£¬$\frac{¦Ð}{6}$£©£¬ÔòÇóf£¨$\frac{6¦È}{¦Ð}$+1£©µÄȡֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Ä³¼Ò¾Ó×°ÊÎÉè¼ÆµÄÐÎ×´ÊÇÈçͼËùʾµÄÖ±ÈýÀâÖùABC-A1B1C1£¬ÆäÖУ¬¡ÏACB=90¡ã£¬BCC1B1ÊDZ߳¤Îª2£¨µ¥Î»£ºÃ×£©µÄÕý·½ÐΣ¬AC=1£¬µãDΪÀâAA1Éϵ͝µã£®
£¨¢ñ£©ÏÖÐèÒª¶Ô¸Ã×°ÊÎÆ·µÄ±íÃæ½øÐÐÍ¿Æá´¦Àí£¬¼ÙÉèÿƽ·½Ã×µÄÓÍÆá·ÑÊÇ40Ôª£¬ÔòÐèÓÍÆá·Ñ¶àÉÙÔª£¿£¨Ìáʾ£º$\sqrt{5}¡Ö2.236$£¬½á¹û±£Áôµ½ÕûÊý룩
£¨¢ò£©µ±µãDΪºÎλÖÃʱ£¬CD¡ÍÆ½ÃæB1C1D£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÏÂÃæ¹ØÓÚËã·¨µÄ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ÇؾÅÉØËã·¨ÊÇÇóÁ½¸öÊýµÄ×î´ó¹«Ô¼ÊýµÄ·½·¨
B£®¸üÏà¼õËðÊõÊÇÇó¶àÏîʽµÄÖµµÄ·½·¨
C£®¸îÔ²ÊõÊDzÉÓÃÕý¶à±ßÐÎÃæ»ýÖ𽥱ƽüÔ²Ãæ»ýµÄËã·¨¼ÆËãÔ²ÖÜÂʦÐ
D£®ÒÔÉϽáÂÛ½Ô´í

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖª¡÷ABCÔÚÕý·½ÐÎÍø¸ñÖеÄλÖÃÈçͼËùʾ£¬Ôòcos¡ÏABC=$\frac{3}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªf¡ä£¨x£©ÊÇÆæº¯Êýf£¨x£©µÄµ¼º¯Êý£¬f£¨-1£©=0£¬µ±x£¾0ʱ£¬xf¡ä£¨x£©+f£¨x£©£¾0£¬ÔòʹµÃf£¨x£©£¾0³ÉÁ¢µÄxµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬-1£©¡È£¨0£¬1£©B£®£¨-1£¬0£©¡È£¨1£¬+¡Þ£©C£®£¨-1£¬0£©¡È£¨0£¬1£©D£®£¨-¡Þ£¬-1£©¡È£¨1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=cos¦È}\\{y=1+sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=$\sqrt{2}$£®
£¨1£©ÇóÇúÏßCµÄÆÕͨ·½³Ì¼°Ö±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÅжÏÖ±ÏßlÓëÇúÏßCµÄλÖùØÏµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÍÖÔ²$\frac{x^2}{16}+\frac{y^2}{12}=1$µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{1}{2}$C£®$\frac{\sqrt{3}}{3}$D£®$\frac{\sqrt{2}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªÉÈÐÎÔ²ÐĽǵĻ¡¶ÈÊýΪ2£¬°ë¾¶Îª3cm£¬ÔòÉÈÐεÄÃæ»ýΪ£¨¡¡¡¡£©
A£®3cm2B£®6cm2C£®9cm2D£®18cm2

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸