精英家教网 > 高中数学 > 题目详情
7.已知扇形圆心角的弧度数为2,半径为3cm,则扇形的面积为(  )
A.3cm2B.6cm2C.9cm2D.18cm2

分析 先计算扇形的弧长,再利用扇形的面积公式可求扇形的面积.

解答 解:根据扇形的弧长公式可得l=αr=6,
根据扇形的面积公式可得S=$\frac{1}{2}$lr=$\frac{1}{2}$×3×6=9.
故选:C.

点评 本题考查扇形的弧长与面积公式,正确运用公式是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.某商区停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时的部分按1小时计算).现有甲、乙二人在该商区临时停车,两人停车都不超过4小时.
(Ⅰ)设甲停车付费a元.依据题意,填写下表:
甲停车时长
(小时)
(0,1](1,2](2,3](3,4]
甲停车费a
(元)
(Ⅱ)若每人停车的时长在每个时段的可能性相同,求甲、乙二人停车付费之和为36元的概率;
(Ⅲ)若甲停车1小时以上且不超过2小时的概率为$\frac{1}{3}$,停车付费多于14元的概率为$\frac{5}{12}$,求甲停车付费恰为6元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=-x2+ax-b,若a,b都是从区间[0,3]任取的一个数,则f(1)>0成立的概率是(  )
A.$\frac{2}{9}$B.$\frac{4}{9}$C.$\frac{5}{9}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=sin(x-$\frac{π}{4}$)cos(x-$\frac{π}{4}$)是(  )
A.最小正周期为π的奇函数B.最小正周期为π的偶函数
C.最小正周期为$\frac{π}{2}$的奇函数D.最小正周期为$\frac{π}{2}$的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.用数学归纳法证明:求1-3+5-7+…+(-1)n-1(2n-1)=(-1)n+1n(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数f(x)=Acosωx(A>0,ω>0)部分图象如图所示,其中M,N(12,0),Q分别是函数图象在y轴右侧第一,二个零点,第一个最低点,且△MQN是等边三角形.求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知抛物线C:y2=8x的焦点为F,直线l与C相切于Q点,P是l上一点(不与Q重合),若以线段PQ为直径的圆恰好经过F,则|PF|的最小值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设i是虚数单位,则复数$z=\frac{1-i}{i}$的共轭复数$\overline z$=-1+i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求z=600x+300y的最大值,使式中的x,y满足约束条件$\left\{\begin{array}{l}{3x+y≤300}\\{x+2y≤252}\\{x≥0}\\{y≥0}\end{array}\right.$的整数解.

查看答案和解析>>

同步练习册答案