【题目】小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.
(1)请分别求出甲、乙两种薪酬方案中日薪
(单位:元)与送货单数
的函数关系式;
(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数与天数满足以下表格:
日均派送单数 | 52 | 54 | 56 | 58 | 60 |
频数(天) | 20 | 30 | 20 | 20 | 10 |
回答下列问题:
①根据以上数据,设每名派送员的日薪为
(单位:元),试分别求出这100天中甲、乙两种方案的日薪
平均数及方差;
②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.
(参考数据:
,
,
,
,
,
,
,
,
)
【答案】(1)
;(2)见解析
【解析】试题分析:(1)甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元. 求出甲、乙两种薪酬方案中日薪
(单位:元)与送货单数
的函数关系式;
①、由表格可知,甲方案中,日薪为152元的有20天,日薪为154元的有30天,日薪为156元的有20天,日薪为158元的有20天,日薪为160元的有10天,由此可求出这100天中甲方案的日薪
平均数及方差:同理可求出这100天中乙两种方案的日薪
平均数及方差,
②不同的角度可以有不同的答案
试题解析:((1)甲方案中派送员日薪
(单位:元)与送货单数
的函数关系式为:
,
乙方案中派送员日薪
(单位:元)与送单数
的函数关系式为:
,
(2)①、由表格可知,甲方案中,日薪为152元的有20天,日薪为154元的有30天,日薪为156元的有20天,日薪为158元的有20天,日薪为160元的有10天,则
,
,
乙方案中,日薪为140元的有50天,日薪为152元的有20天,日薪为176元的有20天,日薪为200元的有10天,则
,
![]()
②、答案一:
由以上的计算可知,虽然
,但两者相差不大,且
远小于
,即甲方案日薪收入波动相对较小,所以小明应选择甲方案.
答案二:
由以上的计算结果可以看出,
,即甲方案日薪平均数小于乙方案日薪平均数,所以小明应选择乙方案.
【题型】解答题
【结束】
20
【题目】已知椭圆
:
的左、右焦点分别为
,
,且离心率为
,
为椭圆上任意一点,当
时,
的面积为1.
(1)求椭圆
的方程;
(2)已知点
是椭圆
上异于椭圆顶点的一点,延长直线
,
分别与椭圆交于点
,
,设直线
的斜率为
,直线
的斜率为
,求证:
为定值.
【答案】(1)
;(2)![]()
【解析】试题分析:(1)设
由题
,由此求出
,可得椭圆
的方程;
(2)设
,
,
当直线
的斜率不存在时,可得
;
当直线
的斜率不存在时,同理可得
.
当直线
、
的斜率存在时,
,
设直线
的方程为
,则由
消去
通过运算可得
,同理可得
,由此得到直线
的斜率为
,
直线
的斜率为
,进而可得
.
试题解析:(1)设
由题
,
解得
,则
,
椭圆
的方程为
.
(2)设
,
,
当直线
的斜率不存在时,设
,则
,
直线
的方程为
代入
,可得
,
,
,则
,
直线
的斜率为
,直线
的斜率为
,
,
当直线
的斜率不存在时,同理可得
.
当直线
、
的斜率存在时,
,
设直线
的方程为
,则由
消去
可得:
,
又
,则
,代入上述方程可得
,
,则![]()
,
设直线
的方程为
,同理可得
,
直线
的斜率为
,
直线
的斜率为
,
.
所以,直线
与
的斜率之积为定值
,即
.
科目:高中数学 来源: 题型:
【题目】中国古代数学家刘徽在《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的立体为“牟合方盖”,如图(1)(2),刘徽未能求得牟合方盖的体积,直言“欲陋形措意,惧失正理”,不得不说“敢不阙疑,以俟能言者”.约200年后,祖冲之的儿子祖暅提出“幂势既同,则积不容异”,后世称为祖暅原理,即:两等高立体,若在每一等高处的截面积都相等,则两立体体积相等.如图(3)(4),祖暅利用八分之一正方体去掉八分之一牟合方盖后的几何体与长宽高皆为八分之一正方体的边长的倒四棱锥“等幂等积”,计算出牟合方盖的体积,据此可知,牟合方盖的体积与其外切正方体的体积之比为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥
中,已知
是正三角形,
平面
为
的中点,
在棱
上,且
.
![]()
(1)求三棱锥
的体积;
(2)求证:
平面
;
(3)若
为
中点,
在棱
上,且
,求证:
平面
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.
![]()
求证:(1)DE∥平面AA1C1C;
(2)BC1⊥AB1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
且函数
,若函数f(x)的图象上两个相邻的对称轴距离为
.
(1)求函数f(x)的解析式;
(2)将函数y=f(x)的图象向左平移
个单位后,得到函数y=g(x)的图象,求函数g(x)的表达式并其对称轴;
(3)若方程f(x)=m(m>0)在
时,有两个不同实数根x1,x2,求实数m的取值范围,并求出x1+x2的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某污水处理厂要在个矩形ABCD的池底水平铺设污水净化管道(
,E是直角顶点)来处理污水,管道越长,污水净化效果越好,设计要求管道的接口E是AB的中点,F、G分别落在AD、BC上,且
,
,设
.
![]()
(1)试将污水管道的长度l表示成
的函数,并写出定义域;
(2)当
为何值时,污水净化效果最好,并求此时管道的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的素养.因为运算,数的威力无限;没有运算,数就只是一个符号.对数运算与指数幂运算是两类重要的运算.
(1)对数的运算性质降低了运算的级别,简化了运算,在数学发展史上是伟大的成就.对数运算性质的推导有很多方法.请同学们根据所学知识推导如下的对数运算性质:如果
,且
,
,那么
;
(2)请你运用上述对数运算性质计算
的值;
(3)因为
,所以
的位数为4(一个自然数数位的个数,叫做位数).请你运用所学过的对数运算的知识,判断
的位数.(注
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com