9£®ÒÑÖª¹ØÓÚxµÄ¶þ´Îº¯Êýf£¨x£©=x2-2sin¦Èx+$\frac{1}{4}$£¬£¨¦È¡ÊR£©£®
£¨1£©Èô¦È=$\frac{¦Ð}{6}$£¬Çóº¯Êýf£¨x£©ÔÚx¡Ê[-1£¬1]ÉϵÄÖµÓò£»
£¨2£©Èôº¯Êýf£¨x£©ÔÚÇø¼ä[-$\frac{1}{2}$£¬$\frac{1}{2}}$]ÉÏÊǵ¥µ÷º¯Êý£¬Çó¦ÈµÄȡֵ¼¯ºÏ£»
£¨3£©Èô¶ÔÈÎÒâx1£¬x2£¬¡Ê[2£¬3]£¬×ÜÓÐ|f£¨x1£©-f£¨x2£©|¡Ü2sin¦Èt2+8t+5¶ÔÈÎÒâ¦È¡ÊRºã³ÉÁ¢£¬ÇótµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©»¯¼ò¶þ´Îº¯Êýf£¨x£©£¬ÀûÓÃÅä·½·¨Çó½â¶þ´Îº¯ÊýµÄÖµÓò¼´¿É£®
£¨2£©»¯¼ò¶þ´Îº¯Êýf£¨x£©=£¨x-sin¦È£©2+$\frac{1}{4}$-sin2¦È£¬Í¨¹ýº¯ÊýµÄµ¥µ÷ÐÔ£¬ÍƳöº¯Êýµ¥µ÷¼õʱsin¦È¡Ý$\frac{1}{2}$£¬µ¥µ÷Ôöʱsin¦È¡Ü-$\frac{1}{2}$£¬Çó½â¼´¿É£®
£¨3£©ÅжϺ¯ÊýÔÚ[2£¬3]Éϵ¥µ÷µÝÔö£¬Çó³ö×îÖµ£¬µÃµ½|f£¨x1£©-f£¨x2£©|µÄ×îÖµ£¬ÍƳö²»µÈʽÇó½ât¼´¿É£®

½â´ð ½â£º£¨1£©¶þ´Îº¯Êýf£¨x£©=x2-2sin¦Èx+$\frac{1}{4}$£¬¦È=$\frac{¦Ð}{6}$£¬
¿ÉµÃ£ºf£¨x£©=x2-x+$\frac{1}{4}$=£¨x-$\frac{1}{2}$£©2¡Ê[0£¬$\frac{9}{4}$]£®
º¯ÊýµÄÖµÓòΪ£º[0£¬$\frac{9}{4}$]£®
£¨2£©ÓÉÌâÒâ¶þ´Îº¯Êýf£¨x£©=x2-2sin¦Èx+$\frac{1}{4}$=£¨x-sin¦È£©2+$\frac{1}{4}$-sin2¦È£¬
º¯Êýf£¨x£©ÔÚÇø¼ä[-$\frac{1}{2}$£¬$\frac{1}{2}}$]ÉÏÊǵ¥µ÷º¯Êý£¬
¡àº¯Êýµ¥µ÷¼õʱsin¦È¡Ý$\frac{1}{2}$£¬µ¥µ÷Ôöʱsin¦È¡Ü-$\frac{1}{2}$£¬$ËùÒԦȵÄȡֵ¼¯ºÏΪ[{\frac{¦Ð}{6}+2k¦Ð£¬\left.{\frac{5¦Ð}{6}+2k¦Ð}]}\right.»ò[{\frac{7¦Ð}{6}+2k¦Ð£¬\left.{\frac{11¦Ð}{6}+2k¦Ð}]}\right.£¨k¡Ê{Z}£©$£®
£¨3£©ÒòΪ¶Ô³ÆÖáx=sin¦È¡Ü1£¬ËùÒÔº¯ÊýÔÚ[2£¬3]Éϵ¥µ÷µÝÔö£¬
´Ó¶ø|f£¨x1£©-f£¨x2£©|¡Üf£¨x£©max-f£¨x£©min
=f£¨3£©-f£¨2£©£®
=5-2sin¦È¡Ü2sin¦Èt2+8t+5£¬ËùÒÔ£¨1+t2£©sin¦È+4t¡Ý0£¬¶ÔÈÎÒâ¦È¡ÊRºã³ÉÁ¢£¬
¼´$\frac{-4t}{{1+{t^2}}}¡Üsin¦È£¬\frac{-4t}{{1+{t^2}}}¡Ü{£¨sin¦È£©_{min}}=-1$£¬
ËùÒÔt2-4t+1¡Ü0£¬ÔòtµÄȡֵ·¶Î§£º$[{\frac{{2-\sqrt{3}}}{2}}\right.£¬\left.{\frac{{2+\sqrt{3}}}{2}}]$£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯ÊýµÄ×îÖµ£¬º¯Êýºã³ÉÁ¢£¬¿¼²é·ÖÀàÌÖÂÛ˼ÏëÒÔ¼°×ª»¯Ë¼ÏëµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÔÚ¿Õ¼äËıßÐÎABCDÖУ¬E£¬F£¬G£¬H·Ö±ðÊÇAC£¬BC£¬BD£¬DAµÄÖе㣬Èô$AB=12\sqrt{2}$£¬$CD=4\sqrt{2}$£¬ÇÒËıßÐÎEFGHµÄÃæ»ýΪ$12\sqrt{3}$£¬ÔòABºÍCDËù³ÉµÄ½ÇΪ60¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=ax2-|x|+2a-1£¨aΪʵ³£Êý£©£®
£¨ I£©Èôa=1£¬Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨ II£©Éèf£¨x£©ÔÚÇø¼ä[1£¬2]ÉϵÄ×îСֵΪg£¨a£©£¬Çóg£¨a£©µÄ±í´ïʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®É躯Êýf£¨x£©=ex-ax+a£¨a¡ÊR£©£¬É躯ÊýÁãµã·Ö±ðΪx1£¬x2£¬ÇÒx1£¼x2£¬Éèf¡ä£¨x£©ÊÇf£¨x£©µÄµ¼º¯Êý£®
£¨¢ñ£©ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨¢ò£©ÇóÖ¤£ºf¡ä£¨$\sqrt{{x}_{1}{x}_{2}}$£©£¼0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èôº¯Êýy=f£¨x£©ÊÇy=log2xµÄ·´º¯Êý£¬ÇÒf£¨a£©+f£¨b£©£¼4£¬Ôòµã£¨a£¬b£©±ØÔÚÖ±Ïßx+y-2=0µÄ£¨¡¡¡¡£©
A£®×óÉÏ·½B£®×óÏ·½C£®ÓÒÉÏ·½D£®ÓÒÏ·½

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®³ÌÐò¿òͼÈçͼËùʾ£¬ÔòÊä³öSµÄֵΪ£¨¡¡¡¡£©
A£®15B£®21C£®22D£®28

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®A£¨2£¬1£©£¬B£¨3£¬-1£©Á½µãÁ¬ÏßµÄбÂÊΪ£¨¡¡¡¡£©
A£®-2B£®-$\frac{1}{2}$C£®$\frac{1}{2}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©¶ÔÒ»ÇÐʵÊýx£¬y¶¼Âú×ãf£¨x+y£©=f£¨y£©+£¨x+2y+1£©x£¬ÇÒf£¨1£©=0£®
£¨1£©Çóf£¨0£©µÄÖµ£»
£¨2£©Çóf£¨x£©µÄ½âÎöʽ£»
£¨3£©µ±x¡Ê[0£¬$\frac{1}{2}$]ʱ£¬f£¨x£©+3£¼2x+aºã³ÉÁ¢£¬ÇóaµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÉèÈ«¼¯U={0£¬1£¬2£¬3£¬4}£¬¼¯ºÏA={1£¬2£¬3}£¬B={2£¬3£¬4}£¬ÔòA¡É£¨∁UB£©=£¨¡¡¡¡£©
A£®{0}B£®{1}C£®{0£¬1}D£®{0£¬1£¬2£¬3£¬4}

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸