【题目】设满足以下两个条件的有穷数列
为
阶“期待数列”:①
;②
.
(1)若等比数列
为
阶“期待数列”
,求公比
;
(2)若一个等差数列
既是
阶“期待数列”又是递增数列
,求该数列的通项公式;
(3)记
阶“期待数列”
的前
项和为
,求证;数列
不能为
阶“期待数列”.
【答案】(1)
;(2)
;(3)证明见解析.
【解析】
(1)对
是否等于1进行讨论,令
解出
;
(2)由
得出下标和为
的两项和为0,根据数列的单调性得出前
项和为
,后
项和为
,根据等差数列的性质将后
项和减去前
项和即可得出公差
与
的关系,再利用求和公式得出首项
;
(3)①根据条件①②即可得出数列的所有正项和为
,所有负项和为
,故而
;
②由①可知
的前
项全为非负数,后面的项全是负数,于是
的前
项和为
,故而得出
,于是得出
.
解:(1)若
,由①得:
,得
,不合题意,舍去;
若
,由①得:
,解得
.
(2)设等差数列的公差是
,
因为
,
,
,
,
,
则
,
.
两式相减得:
,![]()
,
又
,解得
,
![]()
.
(3)记
中非负项和为
,负项和为
,
则
,
,得
,
因为
,所以
.
若存在
,使
,
则
,
,
,
,
,
,
,
,且
,
若数列
是
阶“期待数列”,记
的前
项和为
,
则
,
,
因为
,所以
,所以
,
,
又因为
,则
,
所以![]()
所以
与
不能同时成立,
即数列
不能为
阶“期待数列”.
科目:高中数学 来源: 题型:
【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图和90后从事互联网行业者岗位分布图(90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生),则下列结论中不一定正确的是( )
整个互联网行业从业者年龄分布饼状图 90后从事互联网行业者岗位分布图
![]()
A.互联网行业从业人员中90后占一半以上
B.互联网行业中从事技术岗位的人数90后比80后多
C.互联网行业中从事设计岗位的人数90后比80前多
D.互联网行业中从事市场岗位的90后人数不足总人数的10%
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
位数满足下列条件:①各个数字只能从集合
中选取;②若其中有数字
,则在
的前面不含
,将这样的
位数的个数记为
;
(1)求
、
;
(2)探究
与
之间的关系,求出数列
的通项公式;
(3)对于每个正整数
,在
与
之间插入
个
得到一个新数列
,设
是数列
的前
项和,试探究
能否成立,写出你探究得到的结论并给出证明;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列
的前n项![]()
组成集合
,从集合
中任取
个数,其所有可能的k个数的乘积的和为
(若只取一个数,规定乘积为此数本身),例如:对于数列
,当
时,![]()
![]()
时,![]()
![]()
;
(1)若集合
,求当
时,![]()
![]()
的值;
(2)若集合
,证明:
时集合
的
与
时集合
的
(为了以示区别,用
表示)有关系式
,其中![]()
;
(3)对于(2)中集合
.定义
,求
(用n表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某芯片公司对今年新开发的一批5G手机芯片进行测评,该公司随机调查了100颗芯片,并将所得统计数据分为
五个小组(所调查的芯片得分均在
内),得到如图所示的频率分布直方图,其中
.
![]()
(1)求这100颗芯片评测分数的平均数(同一组中的每个数据可用该组区间的中点值代替).
(2)芯片公司另选100颗芯片交付给某手机公司进行测试,该手机公司将每颗芯片分别装在3个工程手机中进行初测。若3个工程手机的评分都达到11万分,则认定该芯片合格;若3个工程手机中只要有2个评分没达到11万分,则认定该芯片不合格;若3个工程手机中仅1个评分没有达到11万分,则将该芯片再分别置于另外2个工程手机中进行二测,二测时,2个工程手机的评分都达到11万分,则认定该芯片合格;2个工程手机中只要有1个评分没达到11万分,手机公司将认定该芯片不合格.已知每颗芯片在各次置于工程手机中的得分相互独立,并且芯片公司对芯片的评分方法及标准与手机公司对芯片的评分方法及标准都一致(以频率作为概率).每颗芯片置于一个工程手机中的测试费用均为300元,每颗芯片若被认定为合格或不合格,将不再进行后续测试,现手机公司测试部门预算的测试经费为10万元,试问预算经费是否足够测试完这100颗芯片?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com