精英家教网 > 高中数学 > 题目详情
16.函数$f(x)=\sqrt{-{x^2}+4x+12}$的单调递增区间为[-2,2].

分析 根据二次个数的性质以及二次个数的性质求出函数的递增区间即可.

解答 解:令g(x)=-x2+4x+12=-(x-2)2+16,
令g(x)≥0,解得:-2≤x≤6,
而g(x)的对称轴是:x=2,
故g(x)在[-2,2)递增,在(2,6]递减,
故函数f(x)在[-2,2]递增,
故答案为:[-2,2].

点评 本题考查了二次函数的性质,考查函数的单调性问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若10x=3,10y=4,则10x+y的值为(  )
A.700B.300C.400D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,ABED是长方形,平面ABED⊥平面ABC,AB=AC=5,BC=BE=6,且M是BC的中点
(Ⅰ) 求证:AM⊥平面BEC;
(Ⅱ) 求三棱锥B-ACE的体积;
(Ⅲ)若点Q是线段AD上的一点,且平面QEC⊥平面BEC,求线段AQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.从长方体一个顶点出发的三条棱长分别为2、3、4,则其对角线的长为(  )
A.3B.5C.$\sqrt{26}$D.$\sqrt{29}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某人通过普通话二级测试的概率是$\frac{1}{3}$,他连线测试3次,那么其中恰有1次通过的概率是(  )
A.$\frac{4}{9}$B.$\frac{1}{9}$C.$\frac{4}{27}$D.$\frac{2}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=ax2+bx+c(a≠0),设函数y=[f(x)]2+p•f(x)+q的零点所组成的集合为A,则以下集合不可能是A集合的序号为②④.
①$\left\{{\sqrt{2},\sqrt{3}}\right\}$
②$\left\{{\frac{1}{2},\frac{1}{3},\frac{1}{4}}\right\}$
③{-2,3,8}
④{-4,-1,0,2}
⑤{1,3,5,7}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=logax(a>0且a≠1),若f(x1x2…x2017)=8,则f(x12)+f(x22)+…+f(x20172)的值等于(  )
A.2loga8B.16C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=2sinx的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.三角形三个顶点是A(4,0),B(6,7),C(0,3).
(1)求BC边所在的直线的方程;
(2)求△ABC的面积.

查看答案和解析>>

同步练习册答案