分析 (1)求导函数,求出函数的零点,再进行分类讨论,从而可确定函数y=f(x)的单调性与单调区间.
(2)由(1)的结论,结合根的存在性原理,即可求出a的取值范围.
解答 解:(1)由题意得,f′(x)=$\frac{a}{x}$-(1+a)+x=$\frac{(x-1)(x-a)}{x}$(x>0),
由f′(x)=0,得x1=1,x2=a
①当0<a<1时,令f′(x)>0,又x>0,可得0<x<a或x>1;
令f′(x)<0,x>0,可得a<x<1,
∴函数f(x)的单调增区间是(0,a)和(1,+∞),单调减区间是(a,1);
②当a=1时,f′(x)=$\frac{(x-1)^{2}}{x}$≥0,当且仅当x=1时,f′(x)=0,
所以函数f(x)在区间(0,+∞)上是单调增函数;
③当a>1时,令f′(x)>0,又x>0,可得0<x<1或x>a;
令f′(x)<0,x>0,可得1<x<a
∴函数f(x)的单调增区间是(0,1)和(a,+∞),单调减区间是(1,a);
④a≤0时,令f′(x)>0,解得:x>1,令f′(x)<0,解得:0<x<1,
∴f(x)在(0,1)递减,在(1,+∞)递增,
(2)由(1),当a=1时,显然不成立,
当a>1时,由于极大值f(a)=-a-$\frac{1}{2}$<0,∴也不成立,
当0<a<1时,极大值f(a)=-$\frac{1}{2}$a2-a+alna<0,也不成立,
当a≤0时,f(x)在x=1处取得极小值,
又当x→0时,或x→+∞时,都有g(x)→+∞,
∴f(1)=-a-$\frac{1}{2}$<0,解得-$\frac{1}{2}$<a<0,
综上所述a的取值范围为(-$\frac{1}{2}$,0)
点评 本题重点考查导数知识的运用,考查函数的单调性,及根的存在性原理的运用,利用导数的正负确定函数的单调性是关键,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 243 | B. | $27\root{5}{27}$ | C. | $\sqrt{3}$ | D. | 81 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -a | B. | a | C. | |a| | D. | ±a |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com