精英家教网 > 高中数学 > 题目详情
11.设随机变量X~N(100,σ),p(80<X≤120)=$\frac{3}{4}$,则p(X>120)=(  )
A.$\frac{1}{16}$B.$\frac{1}{8}$C.$\frac{1}{4}$D.$\frac{1}{2}$

分析 根据正态分布的对称关系计算.

解答 解:∵P(X<80)=P(X>120),
∴P(X>120)=$\frac{1}{2}$[1-P(80<X<120)]=$\frac{1}{8}$.
故选B.

点评 本题考查了正态分布的特点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.a,b是正实数,且a+b=4,则有(  )
A.$\frac{1}{ab}$≥$\frac{1}{2}$B.$\frac{1}{a}$+$\frac{1}{b}$≥1C.$\sqrt{ab}$≥2D.$\frac{1}{{a}^{2}+{b}^{2}}$≥$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=sinx的图象与函数y=x图象的交点的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知三棱锥A-BCD四个顶点都在半径为3的球面上,且BC过球心,当三棱锥A-BCD的体积最大时,则三棱锥A-BCD的表面积为(  )
A.$18+6\sqrt{3}$B.$18+8\sqrt{3}$C.$18+9\sqrt{3}$D.$18+10\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若圆x2+y2-2x-4y+1=0关于直线l对称,则l被圆心在原点半径为3的圆截得的最短的弦长为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.等腰三角形ABC绕底边上的中线AD所在的直线旋转所得的几何体是(  )
A.圆台B.圆锥C.圆柱D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.不等式(3x+1)(1-2x)>0的解集是(  )
A.$\{x|x<-\frac{1}{3}或x>\frac{1}{2}\}$B.$\{x|-\frac{1}{3}<x<\frac{1}{2}\}$C.$\{x|x>\frac{1}{2}\}$D.$\{x|x>-\frac{1}{3}\}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,在三棱锥A-BOC中,AO⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=2$\sqrt{2}$,动点D在线段AB上.
(Ⅰ)求证:平面COD⊥平面AOB
(Ⅱ)当OD⊥AB时,求三棱锥C-OBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.数列{an}中,${a_1}=\frac{1}{2},{a_{n+1}}=\frac{{n{a_n}}}{{({n+1})({n{a_n}+1})}}({n∈{N^*}})$,若不等式$\frac{3}{n^2}+\frac{1}{n}+t{a_n}≥0$恒成立,则实数t的取值范围是[-$\frac{15}{2}$,+∞)..

查看答案和解析>>

同步练习册答案