精英家教网 > 高中数学 > 题目详情

【题目】椭圆 (a>b>0)与x轴,y轴的正半辆分别交于A,B两点,原点O到直线AB的距离为 ,该椭圆的离心率为 . (Ⅰ)求椭圆的方程;
(Ⅱ)过点 的直线l与椭圆交于两个不同的点M,N,求线段MN的垂直平分线在y轴上截距的取值范围.

【答案】解:(Ⅰ)设直线AB的方程为bx+ay﹣ab=0

∵原点O到直线AB的距离为 ,∴

∵椭圆的离心率为 ,∴

由①②可得:a=2,b=1

∴椭圆的方程为

(Ⅱ)当直线斜率不存在时,线段MN的垂直平分线的纵截距为0

当直线斜率k存在时,设直线l的方程为 ,代入 ,消去y得(9+36k2)x2+120kx+64=0

∵△=14400k2﹣256(9+36k2)>0,∴

设M(x1,y1),N(x2,y2),MN的中点为Q(x0,y0

=

∴Q

∴线段MN的垂直平分线方程为

令x=0,则y=

,可得﹣

∴线段MN的垂直平分线在y轴上截距的取值范围为


【解析】(Ⅰ)设直线AB的方程为bx+ay﹣ab=0,利用原点O到直线AB的距离为 ,椭圆的离心率为 ,建立方程可求a、b的值,从而可得椭圆的方程;(Ⅱ)当直线斜率不存在时,线段MN的垂直平分线的纵截距为0;当直线斜率k存在时,设直线l的方程为 ,代入 ,消去y得(9+36k2)x2+120kx+64=0,进而可求线段MN的垂直平分线方程,由此即可求得线段MN的垂直平分线在y轴上截距的取值范围.
【考点精析】掌握椭圆的标准方程是解答本题的根本,需要知道椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】直线l1 , l2分别是函数f(x)=sinx,x∈[0,π]图象上点P1 , P2处的切线,l1 , l2垂直相交于点P,且l1 , l2分别与y轴相交于点A,B,则△PAB的面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015年12月,京津冀等地数城市指数“爆表”,北方此轮污染为2015年以来最严重的污染过程.为了探究车流量与PM2.5的浓度是否相关,现采集到北方某城市2015年12月份某星期星期一到星期日某一时间段车流量与PM2.5的数据如表:

时间

星期一

星期二

星期三

星期四

星期五

星期六

星期七

车流量x(万辆)

1

2

3

4

5

6

7

PM2.5的浓度y(微克/立方米)

28

30

35

41

49

56

62

(Ⅰ)由散点图知y与x具有线性相关关系,求y关于x的线性回归方程;
(Ⅱ)(ⅰ)利用(Ⅰ)所求的回归方程,预测该市车流量为8万辆时PM2.5的浓度;
(ⅱ)规定:当一天内PM2.5的浓度平均值在(0,50]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(50,100]内,空气质量等级为良.为使该市某日空气质量为优或者为良,则应控制当天车流量在多少万辆以内?(结果以万辆为单位,保留整数.)
参考公式:回归直线的方程是 = x+ ,其中 = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式2xlogax<0在x∈ 上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等差数列{an}的前n项和为Sn , 且满足
(1)求数列{an}的通项公式;
(2)求数列 的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1所示,在直角梯形 中, .将 沿 折起,使得点 在平面 的正投影 恰好落在 边上,得到几何体 ,如图2所示.

(1)求证:
(2)求点 到平面 的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是( )
A.经过点P0(x0 , y0)的直线都可以用方程y-y0=k(x-x0)表示
B.经过定点A(0,b)的直线都可以用方程y=kx+b表示
C.经过任意两个不同点P1(x1 , y1),P2(x2 , y2)的直线都可用方程(x2-x1)(y-y1)=(y2-y1)(x-x1)表示
D.不经过原点的直线都可以用方程 表示

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是圆柱的母线, 的直径, 是底面圆周上异于 的任意一点, .

(1)求证:
(2)当三棱锥 的体积最大时,求 与平面 所成角的大小;
(3) 上是否存在一点 ,使二面角 的平面角为45°?若存在,求出此时 的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线y2=﹣12x的准线与双曲线 =1的两条渐近线所围成的三角形的面积等于

查看答案和解析>>

同步练习册答案