精英家教网 > 高中数学 > 题目详情
下列条件中,能使的条件是(   )
A.平面内有无数条直线平行于平面
B.平面与平面同平行于一条直线
C.平面内有两条直线平行于平面
D.平面内有两条相交直线平行于平面
D
选项A、C:必须是任意一条都与平面平行;B:两平面外一条直线与两个平面的交线平行,则与两平面都平行。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知如下结论:“等边三角形内任意一点到各边的距离之和等于此三角形的高”,将此结论拓展到空间中的正四面体(棱长都相等的三棱锥),可得出的正确结论是:  ____

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四面体中,,点分别是棱 的中点。
(Ⅰ)求证:平面
(Ⅱ)求证:四边形为矩形;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分15分)如图,在四棱锥中,底面是边长为2的正方形,侧棱
(1) 求证:侧面底面
(2) 求侧棱与底面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图正四面体ABCD,E为棱BC上的动点,则异面直线BD和AE所成角的余弦值的范围为 _______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,四边形中(图1),的中点,将(图1)沿直线折起,使二面角(如图2)
(1)求证:平面
(2)求异面直线所成角的余弦值;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点为正方体的棱上一点,且,则面与面所成二面角的正切值为_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平行六面体中,,则对角线的长度为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A—DC—B。
(I)试判断直线AB与平面DEF的位置关系,并说明理由;
(II)求二面角E—DF—C的余弦值;
(III)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论。

查看答案和解析>>

同步练习册答案