精英家教网 > 高中数学 > 题目详情

【题目】给出四个命题

1若sin2A=sin2B,则ABC为等腰三角形;

2若sinA=cosB,则ABC为直角三角形;

3若sin2A+sin2B+sin2C<2,则ABC为钝角三角形;

4若cosABcosBCcosCA=1,则ABC为正三角形

以上正确命题的是_______

【答案】3)(4

【解析】

试题分析1中满足,所以三角形为等腰三角形或直角三角形2,但三角形不是直角三角形3中由正弦定理

4若cosA-BcosB-CcosC-A=1由三角函数的有界性可知三个都是1或者两个-1一个1都是1显然成立,如果两个-1又不可能,所以命题是三角形为正三角形的充要条件,所以4正确

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x-3|-|x+1|,x∈R.

(1)解不等式f(x)<-1;

(2)设函数g(x)=|x+a|-4,且g(x)≤f(x)在x∈[-2,2]上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x-1|+|x-2a|.

(1)当a=1时,求f(x)≤3的解集;

(2)当x∈[1,2]时,f(x)≤3恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数(mZ)为偶函数,且在区间(0,+∞)上是单调增函数.

(1)求函数f(x)的解析式;

(2)设函数,若g(x)>2对任意的xR恒成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+a2.

(I)若f(x)在x=1处有极值10,求a,b的值;

(II)若当a=-1时,f(x)<0在x∈[1,2]恒成立,求b的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本着健康、低碳的生活理念,租用公共自行车的人越来越多.租用公共自行车的收费标准是每车每次不超过两小时免费,超过两小时的部分每小时2元(不足1小时的部分按1小时计算).甲乙两人相互独立租车(各租一车一次).设甲、乙不超过两小时还车的概率分别为 ;两小时以上且不超过三小时还车的概率分别为 ;两人租车时间都不会超过四小时.

(1)求出甲、乙所付租车费用相同的概率;

(2)设甲、乙两人所付的租车费用之和为随机变量,求随机变量的概率分布和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a是实数,函数f(x)= (x-a).

(1)求函数f(x)的单调区间;

(2)设g(a)为f(x)在区间[0,2]上的最小值.

①写出g(a)的表达式;

②求a的取值范围,使得-6≤g(a)≤-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下是解决数学问题的思维过程的流程图:

在此流程图中,①、②两条流程线与“推理与证明”中的思维方法匹配正确的是( )

A. ①—分析法,②—反证法 B. ①—分析法,②—综合法

C. ①—综合法,②—反证法 D. ①—综合法,②—分析法

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数图象上点处的切线方程与直线平行(其中),.

(Ⅰ)求函数的解析式;

(Ⅱ)求函数)上的最小值;

(Ⅲ)对一切 恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案