精英家教网 > 高中数学 > 题目详情

【题目】已知函数是定义域为上的奇函数,且.

(1)用定义证明:函数上是增函数;

(2)若实数t满足求实数t的范围.

【答案】1)见解析(20

【解析】

1)由函数是定义域为(﹣11)上的奇函数,求出b0,从而,利用定义法能证明函数fx)在(﹣11)上是增函数;

2)推导出f2t1)<f1t),由函数fx)在(﹣11)上是增函数,列出不等式组,由此能求出实数t的范围.

解:(1)∵函数是定义域为(﹣11)上的奇函数,

f00,∴b0

任取x1x2(﹣11),且x1x2

fx1)﹣fx2

a0,﹣1x1x21

x1x201x1x201010

∴函数fx)在(﹣11)上是增函数.

2)∵f2t1+ft1)<0,∴f2t1)<﹣ft1),

∵函数是定义域为(﹣11)上的奇函数,且a0

f2t1)<f1t),

∵函数fx)在(﹣11)上是增函数,

解得0t

故实数t的范围是(0).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】由无理数引发的数学危机一直延续到19世纪.直到1872,德国数学家戴德金从连续性的要求出发,用有理数的分割来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为无理的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集划分为两个非空的子集,且满足中的每一个元素都小于中的每一个元素,则称为戴德金分割.试判断,对于任一戴德金分割,下列选项中,不可能成立的是(

A.没有最大元素, 有一个最小元素B.没有最大元素, 也没有最小元素

C.有一个最大元素, 有一个最小元素D.有一个最大元素, 没有最小元素

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(为常数,).给你四个函数:①;②;③;④.

1)当时,求不等式的解集;

2)求函数的最小值;

3)在给你的四个函数中,请选择一个函数(不需写出选择过程和理由),该函数记为满足条件:存在实数a,使得关于x的不等式的解集为,其中常数s,且.对选择的和任意,不等式恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为

(1)求椭圆的方程;

(2)设直线与椭圆交于两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过市场调查,得到某种产品的资金投入x(单位:万元)与获得的利润y(单位:万元)的数据,如表所示:

资金投入x

2

3

4

5

6

利润y

2

3

5

6

9

(1)画出数据对应的散点图;

(2)根据上表提供的数据,用最小二乘法求线性回归直线方程;

(3)现投入资金10万元,求获得利润的估计值为多少万元?

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左,右焦点分别为 ,离心率为 是椭圆上的动点,当时, 的面积为.

(1)求椭圆的标准方程;

(2)若过点的直线交椭圆 两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着人们生活水平的不断提高,人们对餐饮服务行业的要求也越来越高,由于工作繁忙无法抽出时间来享受美味,这样网上外卖订餐应运而生.若某商家的一款外卖便当每月的销售量(单位:千盒)与销售价格(单位:元/盒)满足关系式其中,为常数,已知销售价格为14元/盒时,每月可售出21千盒.

(1)求的值;

(2)假设该款便当的食物材料、员工工资、外卖配送费等所有成本折合为每盒12元(只考虑销售出的便当盒数),试确定销售价格的值,使该店每月销售便当所获得的利润最大.(结果保留一位小数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的最大值;

(2)证明:对任意的,都有

(3)设,比较的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线 的左、右焦点分别为作倾斜角为的直线与轴和双曲线的右支分别交于两点,若点平分线段则该双曲线的离心率是

A. B. C. 2 D.

查看答案和解析>>

同步练习册答案