精英家教网 > 高中数学 > 题目详情
12.二项式(x-$\frac{1}{2x}$)9展开式中,x3项的系数为(  )
A.-$\frac{5}{2}$B.$\frac{5}{2}$C.-$\frac{21}{2}$D.$\frac{21}{2}$

分析 利用通项公式即可得出.

解答 解:二项式(x-$\frac{1}{2x}$)9展开式中,通项公式Tr+1=${∁}_{9}^{r}$${x}^{9-r}(-\frac{1}{2x})^{r}$=$(-\frac{1}{2})^{r}$${∁}_{9}^{r}$x9-2r
令9-2r=3,解得r=3,
x3项的系数=$(-\frac{1}{2})^{3}$${∁}_{9}^{3}$=-$\frac{21}{2}$.
故选:C.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设集合M={x|x≥2},N={x|x2-25<0},则M∩N=(  )
A.(1,5)B.[2,5)C.(-5,2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已成椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右顶点分别为A1、A2,上下顶点分别为B2/B1,左右焦点分别为F1、F2,其中长轴长为4,且圆O:x2+y2=$\frac{12}{7}$为菱形A1B1A2B2的内切圆.
(1)求椭圆C的方程;
(2)点N(n,0)为x轴正半轴上一点,过点N作椭圆C的切线l,记右焦点F2在l上的射影为H,若△F1HN的面积不小于$\frac{3}{16}$n2,求n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x,x>0}\\{{3}^{x},x≤0}\end{array}\right.$,则f(f(2))的值为(  )
A.-$\frac{1}{3}$B.-3C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.两个单位向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$⊥$\overrightarrow{b}$,且$\overrightarrow{a}$⊥(x$\overrightarrow{a}$+$\overrightarrow{b}$),则|2$\overrightarrow{a}$-(x+1)$\overrightarrow{b}$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设向量$\overrightarrow{OA}$=(1,-2),$\overrightarrow{OB}$=(a,-1),$\overrightarrow{OC}$=(-b,0),其中 O 为坐标原点,b>0,若 A,B,C 三点共线,则$\frac{1}{a}$+$\frac{2}{b}$的最小值为(  )
A.4B.6C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>0,b>0})$的一个顶点抛物线${x^2}=4\sqrt{3}y$的焦点重合,F1与F2分别是该椭圆的左右焦点,离心率$e=\frac{1}{2}$,且过椭圆右焦点F2的直线l与椭圆C交于M.N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若$\overrightarrow{OM}•\overrightarrow{ON}=-2$,其中O为坐标原点,求直线l的方程;
(Ⅲ)若AB椭圆C经过原点O的弦,且MN∥AB,判断$\frac{{{{|{AB}|}^2}}}{{|{MN}|}}$是否为定值?若是定值,请求出,若不是定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,AB=2AD=2,$∠DAB=\frac{π}{3}$,PD⊥AD,PD⊥DC.
(Ⅰ)证明:平面PBC⊥平面PBD;
(Ⅱ)若二面角P-BC-D为$\frac{π}{6}$,求AP与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=|2x+3|-|2x-a|,a∈R.
(1)若不等式f(x)≤-5的解集非空,求实数a的取值范围;
(2)若函数y=f(x)的图象关于点(-$\frac{1}{2}$,0)对称,求实数a的值.

查看答案和解析>>

同步练习册答案