精英家教网 > 高中数学 > 题目详情
2.设函数f(x)=|2x+3|-|2x-a|,a∈R.
(1)若不等式f(x)≤-5的解集非空,求实数a的取值范围;
(2)若函数y=f(x)的图象关于点(-$\frac{1}{2}$,0)对称,求实数a的值.

分析 (1)若不等式f(x)≤-5的解集非空,-|3+a|≤-5,即可求实数a的取值范围;
(2)若函数y=f(x)的图象关于点(-$\frac{1}{2}$,0)对称,f(x-$\frac{1}{2}$)+f(-x-$\frac{1}{2})$=0,即可求实数a的值.

解答 解:(1)||2x+3|-|2x-a||≤|2x+3-2x+a|=|3+a|,
∵不等式f(x)≤-5的解集非空,
∴-|3+a|≤-5,∴a≤-8或a≥2;
(2)∵函数y=f(x)的图象关于点(-$\frac{1}{2}$,0)对称,
∴f(x-$\frac{1}{2}$)+f(-x-$\frac{1}{2})$=0,
∴|2x+2|-|2x-1-a|+|-2x+2|-|-2x-1-a|=0,
由于对任意x为实数均成立,
∴a=1.

点评 本题考查绝对值不等式,考查恒成立问题,考查函数对称性的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.二项式(x-$\frac{1}{2x}$)9展开式中,x3项的系数为(  )
A.-$\frac{5}{2}$B.$\frac{5}{2}$C.-$\frac{21}{2}$D.$\frac{21}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD 中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD 都是边长为2的等边三角形,E 是BC的中点.
(Ⅰ)证明:平面AE∥平面 PCD;
(Ⅱ)求PAB与平面 PCD 所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数$f(x)=\left\{{\begin{array}{l}{\frac{{3(1-{2^x})}}{{{2^x}+1}},(-1≤x≤1)}\\{-\frac{1}{4}({x^3}+3x),(x<-1或x>1)}\end{array}}\right.$对任意的m∈[-3,2],总有f(mx-1)+f(x)>0恒成立,则x的取值范围是(  )
A.$({-\frac{1}{2},\frac{1}{3}})$B.(-1,2)C.$({-\frac{4}{3},-\frac{1}{2}})$D.(-2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.双曲线C的渐近线方程为y=±$\frac{{2\sqrt{3}}}{3}x$,一个焦点为F(0,-$\sqrt{7}$),点A($\sqrt{2}$,0),点P为双曲线第一象限内的点,则当P点位置变化时,△PAF周长的最小值为(  )
A.8B.10C.$4+3\sqrt{7}$D.$3+3\sqrt{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,那么向量$\overrightarrow{a}$与向量$\overrightarrow{b}$的关系是垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,则输出的s的值是(  )
A.7B.6C.5D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设随机变量ξ服从正态分布N(μ,7),若P(ξ<2)=P(ξ>4),则μ 与Dξ的值分别为(  )
A.$μ=\sqrt{3},Dξ=\sqrt{7}$B.$μ=\sqrt{3},Dξ=7$C.μ=3,Dξ=7D.$μ=3,Dξ=\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|1<x<3},B={x|x>2},则A∪∁RB=(  )
A.{x|x≤2}B.{x|2<x<3}C.{x|x<3}D.{x|1<x≤2}

查看答案和解析>>

同步练习册答案