精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x,x>0}\\{{3}^{x},x≤0}\end{array}\right.$,则f(f(2))的值为(  )
A.-$\frac{1}{3}$B.-3C.$\frac{1}{3}$D.3

分析 由已知中函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x,x>0}\\{{3}^{x},x≤0}\end{array}\right.$,将x=2代入可得答案.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x,x>0}\\{{3}^{x},x≤0}\end{array}\right.$,
∴f(2)=-1,
∴f(f(2))=f(-1)=$\frac{1}{3}$,
故选:C

点评 本题考查的知识点是分段函数的应用,函数求值,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.下列角中,与$-\frac{5π}{6}$终边相同的角是(  )
A.$-\frac{11π}{6}$B.$\frac{11π}{6}$C.$-\frac{7π}{6}$D.$\frac{7π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.△ABC的内角A、B、C所对的边分别是a、b、c,若$sin2C=\frac{9}{8}sinC$,a=4,c=5,则b=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知焦距为2的椭圆W:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为A1,A2,上、下顶点分别为B1,B2,点M(x0,y0)为椭圆W上不在坐标轴上的任意一点,且四条直线MA1,MA2,MB1,MB2的斜率之积为$\frac{1}{4}$.
(1)求椭圆W的标准方程;
(2)如图所示,点A,D是椭圆W上两点,点A与点B关于原点对称,AD⊥AB,点C在x轴上,且AC与x轴垂直,求证:B,C,D三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,CB⊥平面PAB,AD∥BC,且PA=PB=AB=BC=2AD=2.
(Ⅰ)求证:平面DPC⊥平面BPC;
(Ⅱ)求二面角C-PD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.点A,B,C,D在同一个球的球面上,AB=BC=1,∠ABC=120°,若四面体ABCD体积的最大值为$\frac{\sqrt{3}}{4}$,则这个球的表面积为(  )
A.$\frac{500π}{81}$B.C.$\frac{25π}{9}$D.$\frac{100π}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.二项式(x-$\frac{1}{2x}$)9展开式中,x3项的系数为(  )
A.-$\frac{5}{2}$B.$\frac{5}{2}$C.-$\frac{21}{2}$D.$\frac{21}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设直线$nx+({n+1})y=\sqrt{2}({n∈N*})$与两坐标轴围成的三角形面积为Sn,则S1+S2+…+S2017=(  )
A.$\frac{2014}{2015}$B.$\frac{2015}{2016}$C.$\frac{2016}{2017}$D.$\frac{2017}{2018}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数$f(x)=\left\{{\begin{array}{l}{\frac{{3(1-{2^x})}}{{{2^x}+1}},(-1≤x≤1)}\\{-\frac{1}{4}({x^3}+3x),(x<-1或x>1)}\end{array}}\right.$对任意的m∈[-3,2],总有f(mx-1)+f(x)>0恒成立,则x的取值范围是(  )
A.$({-\frac{1}{2},\frac{1}{3}})$B.(-1,2)C.$({-\frac{4}{3},-\frac{1}{2}})$D.(-2,3)

查看答案和解析>>

同步练习册答案