精英家教网 > 高中数学 > 题目详情
8.已知焦距为2的椭圆W:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为A1,A2,上、下顶点分别为B1,B2,点M(x0,y0)为椭圆W上不在坐标轴上的任意一点,且四条直线MA1,MA2,MB1,MB2的斜率之积为$\frac{1}{4}$.
(1)求椭圆W的标准方程;
(2)如图所示,点A,D是椭圆W上两点,点A与点B关于原点对称,AD⊥AB,点C在x轴上,且AC与x轴垂直,求证:B,C,D三点共线.

分析 (1)由c=1,a2-b2=1,求得四条直线的斜率,由斜率乘积为$\frac{1}{4}$,代入求得a和b的关系,即可求得a和b的值,求得椭圆W的标准方程;
(2)设A,D的坐标,代入椭圆方程,作差法,求得直线AD的斜率,由kAD•kAB=-1,代入求得$\frac{{y}_{1}}{{x}_{1}}$=$\frac{2({y}_{1}+{y}_{2})}{{x}_{1}+{x}_{2}}$,由kBD-kBC=0,即可求证kBD=kBC,即可求证B,C,D三点共线.

解答 解:(1)由题意可知:2c=2,c=1,a2-b2=1,
∵M(x0,y0)为椭圆W上不在坐标轴上的任意一点,
∴$\frac{{x}_{0}^{2}}{{a}^{2}}+\frac{{y}_{0}^{2}}{{b}^{2}}=1$,${y}_{0}^{2}$=$\frac{{b}^{2}}{{a}^{2}}$(a2-${x}_{0}^{2}$),${x}_{0}^{2}$=$\frac{{a}^{2}}{{b}^{2}}$(b2-${y}_{0}^{2}$),
${k}_{M{A}_{1}}$•${k}_{M{A}_{2}}$•${k}_{{MB}_{1}}$•${k}_{M{B}_{2}}$=$\frac{{y}_{0}}{{x}_{0}+a}$•$\frac{{y}_{0}}{{x}_{0}-a}$•$\frac{{y}_{0}-b}{{x}_{0}}$•$\frac{{y}_{0}+b}{{x}_{0}}$=$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-{a}^{2}}$•$\frac{{y}_{0}^{2}-{b}^{2}}{{x}_{0}^{2}}$,
=$\frac{\frac{{b}^{2}}{{a}^{2}}({a}^{2}-{x}_{0}^{2})}{{x}_{0}^{2}-{a}^{2}}$•$\frac{{y}_{0}^{2}-{b}^{2}}{\frac{{a}^{2}}{{b}^{2}}({b}^{2}-{y}_{0}^{2})}$=($\frac{{b}^{2}}{{a}^{2}}$)2=$\frac{1}{4}$,则a2=2b2
∴a2=2,b2=1,
∴椭圆W的标准方程$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)证明:不妨设点A(x1,y1),D(x2,y2),B的坐标(-x1,-y1),C(x1,0),
∵A,D在椭圆上,$\left\{\begin{array}{l}{{x}_{1}^{2}+2{y}_{1}^{2}=1}\\{{x}_{2}^{2}+2{y}_{2}^{2}=1}\end{array}\right.$,=0,即(x1-x2)(x1+x2)+2(y1-y2)(y1+y2)=0,
∴$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{{x}_{1}+{x}_{2}}{2({y}_{1}+{y}_{2})}$,
由AD⊥AB,
∴kAD•kAB=-1,$\frac{{y}_{1}}{{x}_{1}}$•$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-1,$\frac{{y}_{1}}{{x}_{1}}$•(-$\frac{{x}_{1}+{x}_{2}}{2({y}_{1}+{y}_{2})}$,)=-1,
∴$\frac{{y}_{1}}{{x}_{1}}$=$\frac{2({y}_{1}+{y}_{2})}{{x}_{1}+{x}_{2}}$,
∴kBD-kBC=$\frac{{y}_{1}+{y}_{2}}{{x}_{1}+{x}_{2}}$-$\frac{{y}_{1}}{2{x}_{1}}$=$\frac{{y}_{1}+{y}_{2}}{{x}_{1}+{x}_{2}}$-$\frac{{y}_{1}+{y}_{2}}{{x}_{1}+{x}_{2}}$=0,
kBD=kBC
∴B,C,D三点共线.

点评 本题考查椭圆的简单几何性质,直线的斜率公式,考查计算能力,考查分析问题及解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若点P(a,b)是直线$y=\sqrt{3}x-\sqrt{3}$上的点,则(a+1)2+b2的最小值是(  )
A.3B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.观察研究某种植物的生长速度与温度的关系,经过统计,得到生长速度(单位:毫米/月)与月平均气温的对比表如下:
温度t(℃)-5068121520
生长速度y24567810
(1)求生长速度y关于温度t的线性回归方程;(斜率和截距均保留为三位有效数字);
(2)利用(1)中的线性回归方程,分析气温从-50C至200C时生长速度的变化情况,如果某月的平均气温是20C时,预测这月大约能生长多少.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\hat b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,多面体EF-ABCD中,ABCD是正方形,AC、BD相交于O,EF∥AC,点E在AC上的射影恰好是线段AO的中点.
(Ⅰ)求证:BD⊥平面ACF;
(Ⅱ)若直线AE与平面ABCD所成的角为60°,求平面DEF与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已成椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右顶点分别为A1、A2,上下顶点分别为B2/B1,左右焦点分别为F1、F2,其中长轴长为4,且圆O:x2+y2=$\frac{12}{7}$为菱形A1B1A2B2的内切圆.
(1)求椭圆C的方程;
(2)点N(n,0)为x轴正半轴上一点,过点N作椭圆C的切线l,记右焦点F2在l上的射影为H,若△F1HN的面积不小于$\frac{3}{16}$n2,求n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,三棱柱ABC-A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=CC1=2,M是AB的中点.
(1)求证:平面A1CM⊥平面ABB1A1
(2)求点M到平面A1CB1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x,x>0}\\{{3}^{x},x≤0}\end{array}\right.$,则f(f(2))的值为(  )
A.-$\frac{1}{3}$B.-3C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设向量$\overrightarrow{OA}$=(1,-2),$\overrightarrow{OB}$=(a,-1),$\overrightarrow{OC}$=(-b,0),其中 O 为坐标原点,b>0,若 A,B,C 三点共线,则$\frac{1}{a}$+$\frac{2}{b}$的最小值为(  )
A.4B.6C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若对于任意的实数$x∈({0,\frac{1}{2}}]$,都有2-2x-logax<0恒成立,则实数a的取值范围是$\frac{1}{4}$<a<1.

查看答案和解析>>

同步练习册答案