精英家教网 > 高中数学 > 题目详情
10.下列角中,与$-\frac{5π}{6}$终边相同的角是(  )
A.$-\frac{11π}{6}$B.$\frac{11π}{6}$C.$-\frac{7π}{6}$D.$\frac{7π}{6}$

分析 直接写出终边相同角的集合得答案.

解答 解:∵与$-\frac{5π}{6}$角终边相同的角的集合为A={α|α=$-\frac{5π}{6}$+2kπ,k∈Z},
取k=1,得$α=\frac{7π}{6}$.
∴与$-\frac{5π}{6}$角终边相同的角是$\frac{7π}{6}$.
故选:D.

点评 本题考查了终边相同角的概念,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,AD=4,BD=8,平面PAD⊥平面ABCD,AB=2DC=4$\sqrt{5}$.
(Ⅰ)设M是线段PC上的一点,证明:平面BDM⊥平面PAD
(Ⅱ)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,侧面PAB⊥底面ABCD,△PAB为正三角形,AB⊥AD,CD⊥AD,点E为线段BC的中点,F,G分别为线段PA,AE上一点,且AB=AD=2,PF=2FA.
(1)确定点G的位置,使得FG∥平面PCD;
(2)点Q为线段AB上一点,且BQ=2QA,若平面PCQ将四棱锥P-ABCD分成体积相等的两部分,求三棱锥C-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若点P(a,b)是直线$y=\sqrt{3}x-\sqrt{3}$上的点,则(a+1)2+b2的最小值是(  )
A.3B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图:已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$,与双曲线$\frac{x^2}{4}-\frac{y^2}{2}=1$有相同的焦点,且椭圆C过点P(2,1),若直线l与直线OP平行且与椭圆C相交于点A,B.
(Ⅰ) 求椭圆C的标准方程;
(Ⅱ) 求三角形OAB面积的最大值;
(Ⅲ)求证:直线PA,PB与x轴围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)是定义在R上的奇函数,当x>0时,f(x)是幂函数,且图象过点$(3,\sqrt{3})$,则f(x)在R上的解析式为$f(x)=\left\{\begin{array}{l}\sqrt{x},x≥0\\-\sqrt{-x},x<0\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合M={x|x≥2},N={x|x2-25<0},则M∩N=(  )
A.(1,5)B.[2,5)C.(-5,2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.观察研究某种植物的生长速度与温度的关系,经过统计,得到生长速度(单位:毫米/月)与月平均气温的对比表如下:
温度t(℃)-5068121520
生长速度y24567810
(1)求生长速度y关于温度t的线性回归方程;(斜率和截距均保留为三位有效数字);
(2)利用(1)中的线性回归方程,分析气温从-50C至200C时生长速度的变化情况,如果某月的平均气温是20C时,预测这月大约能生长多少.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\hat b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x,x>0}\\{{3}^{x},x≤0}\end{array}\right.$,则f(f(2))的值为(  )
A.-$\frac{1}{3}$B.-3C.$\frac{1}{3}$D.3

查看答案和解析>>

同步练习册答案