精英家教网 > 高中数学 > 题目详情
若大前提是:任何实数的平方都大于0,小前提是:a∈R,结论是:a2>0,那么这个演绎推理所得结论错误的原因是(  )
A、小前提错误
B、大前提错误
C、推理形式错误
D、大前提小前提都错
考点:演绎推理的基本方法
专题:推理和证明
分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.
解答: 解:∵若大前提是:任何实数的平方都大于0,小前提是:a∈R,结论是:a2>0,
其中大前提是:任何实数的平方大于0是不正确的,
故选:B
点评:本题考查演绎推理的基本方法,考查实数的性质,这种问题不用进行运算,只要根据所学的知识,判断这种说法是否正确即可,是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x-1)=f(x+1),f(1-x)=f(1+x),且在[-1,0]上单调递增,设a=f(3),b=f(
2
)
,c=f(2),则a、b、c的大小关系是(  )
A、a>b>c
B、a>c>b
C、b>c>a
D、c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:

若y=f(x)与y=3x的图象关于直线y=x对称,则(  )
A、f(x)=3x
B、f(x)=log3x
C、f(x)=3-x
D、f(x)=log3(-x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cosθ=-
1
5
2
<θ<3π,那么sin 
θ
2
等于(  )
A、-
15
5
B、-
10
5
C、
15
5
D、
10
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α=
7
8
π,则∠α的终边所在的象限是(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

角α的终边上有一点P(a,a),a∈R,a≠0,则tanα的值是(  )
A、
2
2
B、-
2
2
C、
2
2
或-
2
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x2-4x+c,f(1)=1.
(1)求函数f(x)的值域;
(2)若f(a)=9,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(a_1,a_2),
b
=(b_1,b_2)定义向量积:
a
?
b
=(a_1b_1,a_2b_2)
已知
m
=(2,
1
2
n
=(
π
3w
,m)(w>0)点p(x,y)为曲线y=sinwx上的动点,点Q为曲线y=f(x)上的动点
且满足
OQ
=
m
?
OP
+
n
(其中0为坐标原点)
(1)求函数y=f(x)的解析式(用w、m表示);
(2)当m=-
1
2
时,函数f(x)的图象与直线y=-1的所有交点的最小距离为
π
3
,求w的值;
(3)若函数f(x)满足条件f(x+3)+f(x)=0,当x∈[0,1]时,-4<f(x)<4恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某个体服装店经营各种服装,在某周内获纯利润y(元)与该周每天销售这种服装件数x之间的一组数据关系如下表:
x3456789
y66697381899091
已知:
7
i=1
xi2=280,
7
i=1
yi2=45309,
7
i=1
xiyi=3487
(1)若y与x线性相关,请求纯利润y与每天销售件数x之间的回归直线方程;(保留一位小数)
(2)若纯利润y不低于120元,试估计每天销售件数x至少为多少?(保留到整数);
(参考公式:b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,a=
.
y
-b
.
x

查看答案和解析>>

同步练习册答案