精英家教网 > 高中数学 > 题目详情
12.如图所示的几何体中,四边形ABCD为梯形,AD∥BC,AB⊥平面BEC,EC⊥CB,已知BC=2AD=2AB=2.
(Ⅰ)证明:BD⊥平面DEC;
(Ⅱ)若二面角A-ED-B的大小为30°,求EC的长度.

分析 (Ⅰ)推导出AB⊥EC,EC⊥BC,从而EC⊥平面ABCD,进而EC⊥BD,由勾股定理得BD⊥DC,由此能证明BD⊥平面DEC.
(Ⅱ)以B为原点,在平面BCE中过B作BC的垂线为x轴,BC为y轴,BA为z轴,建立空间直角坐标系,利用向量法能求出EC.

解答 证明:(Ⅰ)∵AB⊥平面BEC,∴AB⊥EC,
又∵EC⊥BC,AB∩BC=B,∴EC⊥平面ABCD,
∵BD?平面ABCD,∴EC⊥BD,
由题意知在梯形ABCD中,有BD=DC=$\sqrt{2}$,
∴BD2+DC2=BC2,∴BD⊥DC,
又EC∩CD=C,∴BD⊥平面DEC.
解:(Ⅱ)如图,以B为原点,在平面BCE中过B作BC的垂线为x轴,
BC为y轴,BA为z轴,建立空间直角坐标系,
设$|\overrightarrow{EC}|$=a>0,则B(0,0,0),E(a,2,0),A(0,0,1),C(0,2,0),D(0,1,1),
$\overrightarrow{AD}$=(0,1,0),$\overrightarrow{ED}$=(-a,-1,1),
设面AED的法向量为$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AD}=y=0}\\{\overrightarrow{m}•\overrightarrow{ED}=-ax-y+z=0}\end{array}\right.$,令x=1,得$\overrightarrow{m}$=(1,0,a),
设面BED的法向量为$\overrightarrow{n}$=(x1,y1,z1),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BD}={y}_{1}+{z}_{1}=0}\\{\overrightarrow{n}•\overrightarrow{BE}=a{x}_{1}+2{y}_{1}=0}\end{array}\right.$,令x1=2,得$\overrightarrow{n}$=(2,-a,a),
∵二面角A-ED-B的大小为30°,
∴cos30°=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2+{a}^{2}}{\sqrt{{a}^{2}+1}•\sqrt{2{a}^{2}+4}}$=$\frac{\sqrt{3}}{2}$,解得a=1.(a=-1,舍),
∴EC=1.

点评 本题考查线面垂直的证明,考查线段长的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知向量|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2且$\overrightarrow{a}$•$\overrightarrow{b}$=0,又$\overrightarrow{c}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,$\overrightarrow{d}$=m$\overrightarrow{a}$-n$\overrightarrow{b}$,$\overrightarrow{c}$∥$\overrightarrow{d}$,则$\frac{m}{n}$等于(  )
A.-$\frac{1}{2}$B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,则a+b的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图所示,某几何体的三视图外围是三个边长为2的正方形,则该几何体的体积为(  )
A.$\frac{4}{3}$B.$\frac{8}{3}$C.4D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点,且PA=AD.
(1)求证:PB∥平面AEC;
(2)求证:AE⊥平面PCD;
(3)设二面角D-AE-C为60°,且AP=1,求D到平面AEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在三棱锥A-BCD中,AD⊥平面BCD,CB=CD,AD=DB,P,Q分别在线段AB,AC上,AP=3PB,AQ=2QC,M是BD的中点.
(Ⅰ)证明:DQ∥平面CPM;
(Ⅱ)若二面角C-AB-D的大小为$\frac{π}{3}$,求∠BDC的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥与其外接球的体积比是(  )
A.$\frac{2\sqrt{3}}{9π}$B.$\frac{\sqrt{3}}{9π}$C.$\frac{\sqrt{2}}{16π}$D.$\frac{8\sqrt{2}}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知一个正方体的顶点都在同一球面上,若球的半径为$\sqrt{3}$,则该正方体的表面积24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某三棱锥的三视图如图所示,则该三棱锥的体积为(  )
A.$\frac{2}{3}$B.1C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

同步练习册答案