分析 求得函数的导数,由题意可得f(1)=10,且f′(1)=0,解a,b的方程可得a,b的值,分别检验a,b,由极大值的定义,即可得到所求和.
解答 解:函数f(x)=x3+ax2+bx-a2-7a的导数为f′(x)=3x2+2ax+b,
由在x=1处取得极大值10,可得
f(1)=10,且f′(1)=0,
即为1+a+b-a2-7a=10,3+2a+b=0,
将b=-3-2a,代入第一式可得a2+8a+12=0,
解得a=-2,b=1或a=-6,b=9.
当a=-2,b=1时,f′(x)=3x2-4x+1=(x-1)(3x-1),
可得f(x)在x=1处取得极小值10;
当a=-6,b=9时,f′(x)=3x2-12x+9=(x-1)(3x-9),
可得f(x)在x=1处取得极大值10.
综上可得,a=-6,b=9满足题意.
则a+b=3.
故答案为:3.
点评 本题考查导数的运用:求极值,注意运用极值的定义,考查化简整理的运算能力,注意检验,属于基础题和易错题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5000 | B. | 4950 | C. | 99 | D. | $\frac{99}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 喜食蔬菜 | 喜食肉类 | 合计 | |
| 男同学 | |||
| 女同学 | |||
| 合计 |
| P(K2≥k) | 0.100 | 0.05 | 0.010 |
| k | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com