精英家教网 > 高中数学 > 题目详情
12.在数列{an}中,设ai=2m(i∈N*,3m-2≤i<3m+1,m∈N*),Si=ai+ai+3+ai+6+ai+9+ai+12,则满足Si∈[1000,3000]的i的值为16或17或18.

分析 根据数列通项公式得出Si关于m的表达式,利用Si的范围得出m的值,从而得出i的值.

解答 解:∵3m-2≤i<3m+1,
∴3(m+1)-2≤i+3<3(m+1)+1,
∴ai+3=2m+1
同理可得:ai+6=2m+2,ai+9=2m+3,ai+12=2m+4
∴Si=2m+2m+1+2m+2+2m+3+2m+4=(1+2+4+8+16)2m=31•2m
∴1000≤31•2m≤3000.
∴$\frac{1000}{31}$≤2m≤$\frac{3000}{31}$,
∵m∈N*,∴2m=64.∴m=6.
∵3×6-2≤i<3×6+1,
∴i=16或17或18.
故答案为:16或17或18.

点评 本题考查了数列数列的通项公式,数列求和,根据数列定义得出Si关于m的表达式是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G是线段BE的中点,点F在线段CD上且GF∥平面ADE.
(Ⅰ)求CF长;
(Ⅱ)求平面AEF与平面AFG的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2且$\overrightarrow{a}$•$\overrightarrow{b}$=0,又$\overrightarrow{c}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,$\overrightarrow{d}$=m$\overrightarrow{a}$-n$\overrightarrow{b}$,$\overrightarrow{c}$∥$\overrightarrow{d}$,则$\frac{m}{n}$等于(  )
A.-$\frac{1}{2}$B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系中,O为坐标原点,A、B、C三点满足$\overrightarrow{OC}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OB}$.
(Ⅰ)求证:A、B、C三点共线;
(Ⅱ)已知A(1,cosx),B(1+cosx,cosx)(0≤x≤$\frac{π}{2}$),f(x)=$\overrightarrow{OA}$•$\overrightarrow{OC}$-(2m+$\frac{2}{3}$)•|$\overrightarrow{AB}$|的最小值为-$\frac{3}{2}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.直线y=x-3的倾斜角为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某市16个交通路段中,在早高峰期间与7个路段比较拥堵,现从中任意选10个路段,用X表示这10个路段中交通比较拥堵的路段数,则P(X=4)=(  )
A.$\frac{{C}_{7}^{4}{•C}_{9}^{6}}{{C}_{16}^{10}}$B.$\frac{{C}_{10}^{4}{•C}_{10}^{6}}{{C}_{16}^{10}}$
C.$\frac{{C}_{7}^{4}{•C}_{9}^{6}}{{C}_{16}^{7}}$D.$\frac{{C}_{16}^{7}{•C}_{16}^{3}}{{C}_{16}^{10}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,则a+b的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图所示,某几何体的三视图外围是三个边长为2的正方形,则该几何体的体积为(  )
A.$\frac{4}{3}$B.$\frac{8}{3}$C.4D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知一个正方体的顶点都在同一球面上,若球的半径为$\sqrt{3}$,则该正方体的表面积24.

查看答案和解析>>

同步练习册答案