精英家教网 > 高中数学 > 题目详情
19.观察下面数列的特点,用适当的数填空1,$\frac{1}{4}$,$\frac{1}{9}$,$\frac{1}{16}$,$\frac{1}{25}$.

分析 通过观察可得:每一项的分母是项数的平方,即可得出.

解答 解:12=1,
$(\frac{1}{2})^{2}$=$\frac{1}{4}$,
$(\frac{1}{3})^{2}$=$\frac{1}{9}$,
$(\frac{1}{4})$2=$\frac{1}{16}$,
所以$(\frac{1}{5})$2=$\frac{1}{25}$.
故答案是:$\frac{1}{25}$.

点评 本题考查了通过观察分析猜想归纳求数列通项公式的方法,考查了推理能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax+lnx,g(x)=ex
(1)求函数y=f(x)的极值;
(2)若不等式g(x)<$\frac{x-m}{\sqrt{x}}$在(0,+∞)有解,求实数m的取值菹围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx-a2x2+ax,a∈R,且a≠0.
(1)若函数f(x)在区间[1,+∞)上是减函数,求实数a的取值范围;
(2)设函数g(x)=(3a+1)x-(a2+a)x2,当x>1时,f(x)<g(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.(x-$\frac{2}{x}$)n的展开式中,第3项与第4项的二项式系数相等,则直线y=nx与曲线y=x2所成的封闭区域的面积为$\frac{125}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2ax2+bx+1(e为自然对数的底数).
(1)函数F(x)=f(x)ex在点(-2,F(-2))处的切线方程为y=$\frac{1}{{e}^{2}}$(x+2),求a,b的值;
(2)若b=e-1-2a,方程f(x)=xx在(0,1)内有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an},则“{an}为等比数列”是“an2=an-1•an+1”的(  )
A.充分必要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.定义在R上的奇函数f(x),当x>0时,f(x)=2x-x2,则f(0)+f(-1)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C所对的边分别为a,b,c,a2+b2+ab=c2
(1)求角C的大小;
(2)若c=2acosB,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=sin(ωx+φ)(ω>0且|φ|<$\frac{π}{2}$)在区间($\frac{π}{6}$,$\frac{2π}{3}$)上是单调减函数,且函数值从1减小到-1,则f($\frac{π}{4}$)=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步练习册答案