分析 (1)求导数,利用函数F(x)=f(x)ex在点(-2,F(-2))处的切线方程为y=$\frac{1}{{e}^{2}}$(x+2),建立方程,即可求出a,b;
(2)根据函数与方程之间的关系转化为函数存在零点问题,构造函数,求函数的导数,利用函数极值和函数零点之间的关系进行转化求解即可.
解答 解:(1)若F(x)=(2ax2+bx+1)ex,
则F′(x)=(4ax+b)ex+(2ax2+bx+1)ex=[2ax2+(b+4a)x+b+1]ex,
∵函数F(x)=f(x)ex在点(-2,F(-2))处的切线方程为y=$\frac{1}{{e}^{2}}$(x+2),
∴F′(-2)=[8a+(b+4a)(-2)+b+1]e-2=$\frac{1}{{e}^{2}}$,F(-2)=(8a-2b+1)e2=0
∴a=-$\frac{1}{8}$,b=0.
(2)方程f(x)=ex在(0,1)内有解,即2ax2+bx+1=ex在(0,1)内有解,
即ex-2ax2-bx-1=0,
设g(x)=ex-2ax2-bx-1,
则g(x)在(0,1)内有零点,
设x0是g(x)在(0,1)内的一个零点,
则g(0)=0,g(1)=0,知函数g(x)在(0,x0)和(x0,1)上不可能单调递增,也不可能单调递减,
设h(x)=g′(x),
则h(x)在(0,x0)和(x0,1)上存在零点,
即h(x)在(0,1)上至少有两个零点,
g′(x)=ex-4ax-b,h′(x)=ex-4a,
当a≤$\frac{1}{4}$时,h′(x)>0,h(x)在(0,1)上递增,h(x)不可能有两个及以上零点,
当a≥$\frac{e}{4}$时,h′(x)<0,h(x)在(0,1)上递减,h(x)不可能有两个及以上零点,
当$\frac{1}{4}$<a<$\frac{e}{4}$时,令h′(x)=0,得x=ln(4a)∈(0,1),
则h(x)在(0,ln(4a))上递减,在(ln(4a),1)上递增,h(x)在(0,1)上存在最小值h(ln(4a)).
若h(x)有两个零点,则有h(ln(4a))<0,h(0)>0,h(1)>0,
h(ln(4a))=4a-4aln(4a)-b=6a-4aln(4a)+1-e,$\frac{1}{4}$<a<$\frac{e}{4}$,
设φ(x)=$\frac{3}{2}$x-xlnx+1-x,(1<x<e),
则φ′(x)=$\frac{1}{2}$-lnx,
令φ′(x)=$\frac{1}{2}$-lnx=0,得x=$\sqrt{e}$,
当1<x<$\sqrt{e}$时,φ′(x)>0,此时函数φ(x)递增,
当$\sqrt{e}$<x<e时,φ′(x)<0,此时函数φ(x)递减,
则φ(x)max=φ($\sqrt{e}$)=$\sqrt{e}$+1-e<0,
则h(ln(4a))<0恒成立,
由h(0)=1-b=2a-e+2>0,h(1)=e-4a-b>0,
得$\frac{e-2}{2}$<a<$\frac{1}{2}$,
当$\frac{e-2}{2}$<a<$\frac{1}{2}$时,设h(x)的两个零点为x1,x2,则g(x)在(0,x1)递增,
在(x1,x2)上递减,在(x2,1)递增,
则g(x1)>g(0)=0,
g(x2)<g(1)=0,
则g(x)在(x1,x2)内有零点,
综上,实数a的取值范围是($\frac{e-2}{2}$,$\frac{1}{2}$).
点评 本题主要考查函数的最值、单调性、零点等基础知识,考查运算能力、推理论证能力,考查函数与方程、数形结合、化归与转化等数学思想方法.属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“若m≤0,则方程x2+x+m=0有实数根”的逆否命题为:“若方程x2+x+m=0无实数根,则m>0” | |
| B. | “x2-x-2=0”是“x=2”的必要不充分条件 | |
| C. | 若p∧q为假命题,则p,q中必有一真一假 | |
| D. | 命题“在△ABC中,a=b?A=B?sinA=sinB”为真 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com