精英家教网 > 高中数学 > 题目详情
已知
a
+
b
+
c
=
0
,|
a
|=3,|
b
|=5,|
c
|=7

(1)求
a
b
的夹角θ的余弦值;
(2)求实数k,使k
a
+
b
a
-2
b
垂直.
分析:(1)先将等式变形,利用向量模的平方等于向量的平方,再利用向量的数量积公式求出夹角;
(2)利用向量垂直的充要条件列出方程,将向量的模、夹角代入,解方程求出k.
解答:解:(1)∵
a
+
b
+
c
=
0

a
+
b
=-
c

a
2
+2
a
b
+
b
2
=
c
2

|
a
|=3,|
b
|=5,|
c
|=7

2
a
b
=15

2×3×5cosθ=15
cosθ=
1
2

θ=
π
3

(2)(k
a
+
b
)⊥ (
a
-2
b
)
(k
a
+
b
)• (
a
-2
b
)=0

k
a
2
+
a
b
-2k
a
b
-2
b
2
=0
|
a
|=3,|
b
|=5,|
c
|=7,θ=
π
3

∴k=-
85
12
点评:本题考查向量的性质:向量的模的平方等于向量的平方;向量的数量积公式;向量垂直的充要条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•自贡一模)已知
a
+
b
+
c
=
0
,且
a
c
的夹角为60°,|
b
|=
3
|
a
|,则cos<
a
b
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
+
b
+
c
=
0
,|
a
|=3,|
b
|=5,|
c
|=7
(1)求<
a
b
>;
(2)是否存在实数k,使k
a
+
b
a
-2
b
互相垂直?

查看答案和解析>>

科目:高中数学 来源: 题型:

分析与综合法证明不等式:已知a+b+c=0,求证:ab+bc+ca≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a+b+c=0,且a、b、c不同时为零,则ab+bc+ca的值的符号为
.(填“正”或“负”)

查看答案和解析>>

同步练习册答案