精英家教网 > 高中数学 > 题目详情
8.某同学用“五点法”画函数f(x)=Asin(ωx+φ)$({A>0,ω>0,|φ|<\frac{π}{2}})$在某一个周期的图象时,列表并填入的部分数据如表:
x$\frac{2}{3}$πx1$\frac{8}{3}$πx2x3
ωx+φ0$\frac{π}{2}$π$\frac{3}{2}$π
Asin(ωx+φ)020-20
(I)求x1,x2,x3的值及函数f(x)的表达式;
(Ⅱ)若对任意的x1,x2∈[0,π],都有|f(x1)-f(x2)|<t恒成立,求实数t的取值范围.

分析 (I)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.
(Ⅱ)由题意可得f(x)∈[-$\sqrt{3}$,1],且|f(x1)-f(x2)|的最大值小于t,由此求得t的范围.

解答 解:(I)x1=$\frac{\frac{2π}{3}+\frac{8π}{3}}{2}$=$\frac{5π}{3}$,x1-$\frac{2π}{3}$=π,∴x2=$\frac{8π}{3}$+π=$\frac{11π}{3}$,x3=$\frac{11π}{3}$+π=$\frac{14π}{3}$.
由表格可得A=2,$\frac{T}{2}$=$\frac{π}{ω}$=$\frac{8π}{3}$-$\frac{2π}{3}$,求得ω=$\frac{1}{2}$,再根据五点法作图可得$\frac{1}{2}$•$\frac{2π}{3}$+φ=0,求得φ=-$\frac{π}{3}$,
故函数f(x)=2sin($\frac{1}{2}$x-$\frac{π}{3}$).
(Ⅱ)若对任意的x1,x2∈[0,π],都有|f(x1)-f(x2)|<t恒成立,
故当x∈[0,π]时,$\frac{1}{2}$x∈[-$\frac{π}{3}$,$\frac{π}{6}$],∴f(x)∈[-$\sqrt{3}$,1],|f(x1)-f(x2)|的最大值小于t.
故 1-(-$\sqrt{3}$)<t,即 t>1+$\sqrt{3}$.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,函数的恒成立问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.给出下列四个命题,其中错误的命题有(  )个.
(1)函数y=sin2x+cos2x在x∈[0,$\frac{π}{2}$]上的单调递增区间是[0,$\frac{π}{8}$];
(2)设随机变量X~N(1,σ2),若P(0<X<1)=0.4,则P(0<X<2)=0.8;
(3)设函数f(x)=sin(2x+$\frac{π}{3}$),f(x)的图象向左平移$\frac{π}{12}$个单位,得到一个偶函数的图象;
(4)“直线x-ay=0,与直线x+ay=0互相垂直”的充分条件是“a=1”
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E、E1、F分别是棱AD、AA1、AB的中点.
(1)判断平面ADD1A1与平面FCC1的位置关系,并证明;
(2)证明:直线EE1∥平面FCC1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知 a、b、c分别为ABC三个内角A、B、C的对边,且ccosA-$\sqrt{3}$asinC-c=0
(1)求角A
(2)若a=2,△ABC的面积为$\sqrt{3}$,求b、c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.下面的数组均由三个数组成,它们是:(1,2,3),(2,4,6),(3,8,11),(4,16,20),(5,32,37),…,(an,bn,cn).
(1)请写出数列{an},{bn},{cn}的通项公式,(无需证明)
(2)若数列{cn}的前n项和为Mn,求M10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知直线x=$\frac{π}{4}$和x=$\frac{5π}{4}$是函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)图象的两条相邻的对称轴,则φ=(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列命题中,正确的有(  )
①如果一条直线垂直于平面内的两条直线,那么这条直线和这个平面垂直.
②过直线l外一点P,有且仅有一个平面与l垂直.
③如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.
④垂直于角的两边的直线必垂直角所在的平面.
⑤过点A垂直于直线a的所有直线都在过点A垂直于a的平面内.
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.写出下面各数列的一个通项公式:
(1)3,5,7,9,…;
(2)$\frac{1}{2}$,$\frac{3}{4}$,$\frac{7}{8}$,$\frac{15}{16}$,$\frac{31}{32}$,…;
(3)-1,$\frac{3}{2}$,-$\frac{1}{3}$,$\frac{3}{4}$,-$\frac{1}{5}$,$\frac{3}{6}$…;
(4)3,33,333,3333,….

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等差数列{an}中,a2=1,前4项之和S4=6.
(1)求数列{an}通项公式;
(2)若bn=2an+n,求数列{bn}的通项公式bn,及前n项和Tn

查看答案和解析>>

同步练习册答案