精英家教网 > 高中数学 > 题目详情
18.已知等差数列{an}中,a2=1,前4项之和S4=6.
(1)求数列{an}通项公式;
(2)若bn=2an+n,求数列{bn}的通项公式bn,及前n项和Tn

分析 (1)设等差数列{an}的公差为d,运用等差数列的通项公式和求和公式,解方程可得首项和公差,即可得到所求通项;
(2)求得bn=2an+n=2n-1+n,再由数列的求和方法:分组求和,结合等差数列和等比数列的求和公式,计算即可得到.

解答 解:(1)设等差数列{an}的公差为d,
由a2=1,前4项之和S4=6,
可得a1+d=1,4a1+$\frac{1}{2}$×4×3d=6,
解得a1=0,d=1,
则数列{an}通项公式为an=a1+(n-1)d=n-1;
(2)bn=2an+n=2n-1+n,
前n项和Tn=(1+2+22+…+2n-1)+(1+2+3+…+n)
=$\frac{1-{2}^{n}}{1-2}$+$\frac{1}{2}$n(n+1)=2n-1+$\frac{1}{2}$n(n+1).

点评 本题考查等差数列和等比数列的通项和求和公式的运用,考查数列的求和方法:分组求和,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.某同学用“五点法”画函数f(x)=Asin(ωx+φ)$({A>0,ω>0,|φ|<\frac{π}{2}})$在某一个周期的图象时,列表并填入的部分数据如表:
x$\frac{2}{3}$πx1$\frac{8}{3}$πx2x3
ωx+φ0$\frac{π}{2}$π$\frac{3}{2}$π
Asin(ωx+φ)020-20
(I)求x1,x2,x3的值及函数f(x)的表达式;
(Ⅱ)若对任意的x1,x2∈[0,π],都有|f(x1)-f(x2)|<t恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知{an}是递增的等差数列,a2,a4是方程x2-10x+24=0的根.
(1)求{an}的通项公式;
(2)求数列{$\frac{{a}_{n}}{{2}^{n+1}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知实数a,b满足2a+1+2b+1=4a+4b,则a+b的取值范围是(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.画出函数y=$\frac{{x}^{2}}{{2}^{x}-1}$的大致图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}的通项公式为an=n•pn(p>0),如果数列{an}是递增数列,则实数p的取值范围是p>$\frac{n}{n+1}$;如果存在m∈N*,对任意n∈N*有an≤am成立,则实数p的取值范围是$\frac{m-1}{m}$≤p≤$\frac{m}{m+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.
(1)若点P的轨迹为曲线C,求此曲线的方程;
(2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值,并求此时直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.画出方程x4-x2=y4-y2的曲线C,并回答下列问题:
(1)若点A(m,$\sqrt{2}$)在曲线C上,求m的值;
(2)若直线y=a(a∈R)与曲线C分别有一个、两个、三个、四个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知sin($\frac{π}{2}$-θ)-cos(π+θ)=3sin(2π-θ),求sinθcosθ+cos2θ.

查看答案和解析>>

同步练习册答案