精英家教网 > 高中数学 > 题目详情
10.已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.
(1)若点P的轨迹为曲线C,求此曲线的方程;
(2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值,并求此时直线l2的方程.

分析 (1)设P点的坐标为(x,y),用坐标表示|PA|、|PB|,代入等式|PA|=2|PB|,整理即得点P的轨迹方程;
(2)求出圆心坐标,圆的半径,结合题意,利用圆的到直线的距离,半径,|QM|满足勾股定理,求出|QM|就是最小值,即可求此时直线l2的方程.

解答 解:(1)设P点的坐标为(x,y),
∵两定点A(-3,0),B(3,0),动点P满足|PA|=2|PB|,
∴(x+3)2+y2=4[(x-3)2+y2],
即(x-5)2+y2=16.
所以此曲线的方程为(x-5)2+y2=16.
(2)∵(x-5)2+y2=16的圆心坐标为M′(5,0),半径为4,则圆心M′到直线l1的距离为:$\frac{|5+3|}{\sqrt{2}}$=4$\sqrt{2}$,
∵点Q在直线l1:x+y+3=0上,过点Q的直线l2与曲线C(x-5)2+y2=16只有一个公共点M,
∴|QM|的最小值为:$\sqrt{(4\sqrt{2})^{2}-{4}^{2}}$=4.
直线M′Q的方程为x-y-5=0,与直线l1:x+y+3=0联立,可得Q(1,-4),
设切线方程为y+4=k(x-1),即kx-y-k-4=0,
∴圆心到直线的距离d=$\frac{|4k-4|}{\sqrt{{k}^{2}+1}}$=4,∴k=0,方程为y=-4,
斜率不存在时,方程为x=1.

点评 考查两点间距离公式及圆的性质,着重考查直线与圆的位置关系,勾股定理的应用,考查计算能力,转化思想的应用,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.下列命题中,正确的有(  )
①如果一条直线垂直于平面内的两条直线,那么这条直线和这个平面垂直.
②过直线l外一点P,有且仅有一个平面与l垂直.
③如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.
④垂直于角的两边的直线必垂直角所在的平面.
⑤过点A垂直于直线a的所有直线都在过点A垂直于a的平面内.
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若0<x1<x2<1,则下列判断正确的有③.
①e${\;}^{{x}_{2}}$-e${\;}^{{x}_{1}}$>lnx2-lnx1;②e${\;}^{{x}_{2}}$-e${\;}^{{x}_{1}}$<lnx2-lnx1;③x2e${\;}^{{x}_{1}}$>x1e${\;}^{{x}_{2}}$;④x2e${\;}^{{x}_{1}}$<x1e${\;}^{{x}_{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等差数列{an}中,a2=1,前4项之和S4=6.
(1)求数列{an}通项公式;
(2)若bn=2an+n,求数列{bn}的通项公式bn,及前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.等腰Rt△ABC的斜边AB所在的直线方程是3x-y+2=0,C($\frac{14}{5}$,$\frac{2}{5}$),求直线AC和直线BC的方程和△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知曲线C上的点到定点F(0,$\frac{P}{2}$)(p>0)与到定直线y=-$\frac{P}{2}$的距离相等,A是曲线C上第一象限内的点,在点A处的切线l1与x、y轴分别交于D、Q两点,且|FD|=2,∠AFD=60°.
(1)求曲线C的方程;
(2)求∠FAD的角平分线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.三角形ABC中,sinBcosC=1-cosBsinC,三角形ABC的形状为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知{an}为等差数列,a2=6,a6=18,数列{cn}满足cn+1=2cn+1且c1=0,而bn=cn+1.
(1)求{an}和{bn}的通项公式;
(2)设{an}的前n项和为Sn,dn=Sncos($\frac{{a}_{n}}{3}$π)(n∈N*),求{dn}的前18项和T18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.圆x2+y2-4x-5=0的点到直线3x-4y+20=0的距离的最大值为$\frac{41}{5}$.

查看答案和解析>>

同步练习册答案